HOME
*





Jack Silver
Jack Howard Silver (23 April 1942 – 22 December 2016) was a set theorist and logician at the University of California, Berkeley. Born in Montana, he earned his Ph.D. in Mathematics at Berkeley in 1966 under Robert Vaught before taking a position at the same institution the following year. He held an Alfred P. Sloan Research Fellowship from 1970 to 1972. Silver made several contributions to set theory in the areas of large cardinals and the constructible universe ''L''. Contributions In his 1975 paper "On the Singular Cardinals Problem", Silver proved that if a cardinal ''κ'' is singular with uncountable cofinality and 2''λ'' = ''λ''+ for all infinite cardinals ''λ'' < ''κ'', then 2''κ'' = ''κ''+. Prior to Silver's proof, many mathematicians believed that a forcing argument would yield that the negation of the theorem is

picture info

Missoula, Montana
Missoula ( ; fla, label=Salish language, Séliš, Nłʔay, lit=Place of the Small Bull Trout, script=Latn; kut, Tuhuⱡnana, script=Latn) is a city in the U.S. state of Montana; it is the county seat of Missoula County, Montana, Missoula County. It is located along the Clark Fork River near its confluence with the Bitterroot River, Bitterroot and Blackfoot River (Montana), Blackfoot Rivers in western Montana and at the convergence of five mountain ranges, thus it is often described as the "hub of five valleys". The 2020 United States Census shows the city's population at 73,489 and the population of the Missoula Metropolitan Area at 117,922. After Billings, Montana, Billings, Missoula is the second-largest city and metropolitan area in Montana. Missoula is home to the University of Montana, a public research university. The Missoula area began seeing settlement by people of European descent in 1858 including William Thomas Hamilton (frontiersman), William T. Hamilton, who set ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cardinal Number
In mathematics, cardinal numbers, or cardinals for short, are a generalization of the natural numbers used to measure the cardinality (size) of sets. The cardinality of a finite set is a natural number: the number of elements in the set. The ''transfinite'' cardinal numbers, often denoted using the Hebrew symbol \aleph ( aleph) followed by a subscript, describe the sizes of infinite sets. Cardinality is defined in terms of bijective functions. Two sets have the same cardinality if, and only if, there is a one-to-one correspondence (bijection) between the elements of the two sets. In the case of finite sets, this agrees with the intuitive notion of size. In the case of infinite sets, the behavior is more complex. A fundamental theorem due to Georg Cantor shows that it is possible for infinite sets to have different cardinalities, and in particular the cardinality of the set of real numbers is greater than the cardinality of the set of natural numbers. It is also possible for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kurepa Tree
In set theory, a Kurepa tree is a tree (''T'', <) of height ω1, each of whose levels is at most countable, and has at least 2 many branches. This concept was introduced by . The existence of a Kurepa tree (known as the Kurepa hypothesis, though Kurepa originally conjectured that this was false) is consistent with the axioms of ZFC: Solovay showed in unpublished work that there are Kurepa trees in Gödel's

Silver Indiscernible
In the mathematical discipline of set theory, 0# (zero sharp, also 0#) is the set of true formulae about indiscernibles and order-indiscernibles in the Gödel constructible universe. It is often encoded as a subset of the integers (using Gödel numbering), or as a subset of the hereditarily finite sets, or as a real number. Its existence is unprovable in ZFC, the standard form of axiomatic set theory, but follows from a suitable large cardinal axiom. It was first introduced as a set of formulae in Silver's 1966 thesis, later published as , where it was denoted by Σ, and rediscovered by , who considered it as a subset of the natural numbers and introduced the notation O# (with a capital letter O; this later changed to the numeral '0'). Roughly speaking, if 0# exists then the universe ''V'' of sets is much larger than the universe ''L'' of constructible sets, while if it does not exist then the universe of all sets is closely approximated by the constructible sets. Definition ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Covering Lemma
In the foundations of mathematics, a covering lemma is used to prove that the non-existence of certain large cardinals leads to the existence of a canonical inner model, called the core model, that is, in a sense, maximal and approximates the structure of the von Neumann universe ''V''. A covering lemma asserts that under some particular anti-large cardinal assumption, the core model exists and is maximal in a sense that depends on the chosen large cardinal. The first such result was proved by Ronald Jensen for the constructible universe assuming 0# does not exist, which is now known as Jensen's covering theorem. Example For example, if there is no inner model for a measurable cardinal, then the Dodd–Jensen core model, ''K''DJ is the core model and satisfies the covering property, that is for every uncountable set ''x'' of ordinals, there is ''y'' such that ''y'' ⊃ ''x'', ''y'' has the same cardinality as ''x'', and ''y'' ∈ ''K''DJ. (If 0# does not exist, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Ronald Jensen
Ronald Björn Jensen (born April 1, 1936) is an American mathematician who lives in Germany, primarily known for his work in mathematical logic and set theory. Career Jensen completed a BA in economics at American University in 1959, and a Ph.D. in mathematics at the University of Bonn in 1964. His supervisor was Gisbert Hasenjaeger. Jensen taught at Rockefeller University, 1969–71, and the University of California, Berkeley, 1971–73. The balance of his academic career was spent in Europe at the University of Bonn, the University of Oslo, the University of Freiburg, the University of Oxford, and the Humboldt-Universität zu Berlin, from which he retired in 2001. He now resides in Berlin. Jensen was honored by the Association for Symbolic Logic as the first Gödel Lecturer in 1990. In 2015, the European Set Theory Society awarded him and John R. Steel the Hausdorff Medal for their paper "K without the measurable". Results Jensen's better-known results include the: * Axiomatic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Silver Machine
"Silver Machine" is a 1972 song by the UK rock group Hawkwind. It was originally released as a single on 9 June 1972, reaching number three on the UK singles chart. The single was re-issued in 1976, again in 1978 reaching number 34 on the UK singles charts, and once again in 1983 reaching number 67 on the UK singles charts. The original mix has been re-released on the remasters version of ''In Search of Space''. The single "Silver Machine" was recorded live at a Greasy Truckers benefit gig at The Roundhouse, London on 13 February 1972 and this version was released on the various artists compilation album '' Glastonbury Fayre'' and the 2007 box set of ''Greasy Truckers Party''. Overdubs were applied and mixing took place at Morgan Studios with Douglas Smith and Dave Robinson overseeing the process. Dave Brock took production credits using an alias of Dr Technical. The sleeve was designed by Barney Bubbles (uncredited). Stacia appears prominently in the music video. Personn ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Measurable Cardinal
In mathematics, a measurable cardinal is a certain kind of large cardinal number. In order to define the concept, one introduces a two-valued measure on a cardinal , or more generally on any set. For a cardinal , it can be described as a subdivision of all of its subsets into large and small sets such that itself is large, and all singletons are small, complements of small sets are large and vice versa. The intersection of fewer than large sets is again large. It turns out that uncountable cardinals endowed with a two-valued measure are large cardinals whose existence cannot be proved from ZFC. The concept of a measurable cardinal was introduced by Stanislaw Ulam in 1930. Definition Formally, a measurable cardinal is an uncountable cardinal number κ such that there exists a κ-additive, non-trivial, 0-1-valued measure on the power set of ''κ''. (Here the term ''κ-additive'' means that, for any sequence ''A''''α'', α<λ of cardinality '' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Supercompact Cardinal
In set theory, a supercompact cardinal is a type of large cardinal. They display a variety of reflection properties. Formal definition If ''λ'' is any ordinal, ''κ'' is ''λ''-supercompact means that there exists an elementary embedding ''j'' from the universe ''V'' into a transitive inner model ''M'' with critical point ''κ'', ''j''(''κ'')>''λ'' and :^\lambda M\subseteq M \,. That is, ''M'' contains all of its ''λ''-sequences. Then ''κ'' is supercompact means that it is ''λ''-supercompact for all ordinals ''λ''. Alternatively, an uncountable cardinal ''κ'' is supercompact if for every ''A'' such that , ''A'', ≥ ''κ'' there exists a normal measure over 'A''sup>< ''κ'' with the additional property that every function f: \to A such that \ \in U is constant on a set in U. Here "constan ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


List Of Forcing Notions
In mathematics, forcing (mathematics), forcing is a method of constructing new models ''M''[''G''] of set theory by adding a generic subset ''G'' of a poset ''P'' to a model ''M''. The poset ''P'' used will determine what statements hold in the new universe (the 'extension'); to force a statement of interest thus requires construction of a suitable ''P''. This article lists some of the posets ''P'' that have been used in this construction. Notation *''P'' is a poset with order < *''V'' is the universe of all sets *''M'' is a countable transitive model of set theory *''G'' is a generic subset of ''P'' over ''M''.


Definitions

*''P'' satisfies the countable chain condition if every antichain in ''P'' is at most countable. This implies that ''V'' and ''V''[''G''] have the same cardinals (and the same cofinalities). *A subset ''D'' of ''P'' is called dense if for every there is some with . *A filter on ''P'' is a nonempty subset ''F'' of ''P'' such that if and th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Chang's Conjecture
In model theory, a branch of mathematical logic, Chang's conjecture, attributed to Chen Chung Chang by , states that every model of type (ω2,ω1) for a countable language has an elementary submodel of type (ω1, ω). A model is of type (α,β) if it is of cardinality α and a unary relation is represented by a subset of cardinality β. The usual notation is (\omega_2,\omega_1)\twoheadrightarrow(\omega_1,\omega). The axiom of constructibility implies that Chang's conjecture fails. Jack Silver, Silver proved the consistency of Chang's conjecture from the consistency of an ω1-Erdős cardinal. Hans-Dieter Donder showed a weak version of the reverse implication: if CC is not only consistent but actually holds, then ω2 is ω1-Erdős in core model, K. More generally, Chang's conjecture for two pairs (α,β), (γ,δ) of cardinals is the claim that every model of type (α,β) for a countable language has an elementary submodel of type (γ,δ). The consistency of (\omega_3,\omega_2)\twohe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Consistency
In classical deductive logic, a consistent theory is one that does not lead to a logical contradiction. The lack of contradiction can be defined in either semantic or syntactic terms. The semantic definition states that a theory is consistent if it has a model, i.e., there exists an interpretation under which all formulas in the theory are true. This is the sense used in traditional Aristotelian logic, although in contemporary mathematical logic the term ''satisfiable'' is used instead. The syntactic definition states a theory T is consistent if there is no formula \varphi such that both \varphi and its negation \lnot\varphi are elements of the set of consequences of T. Let A be a set of closed sentences (informally "axioms") and \langle A\rangle the set of closed sentences provable from A under some (specified, possibly implicitly) formal deductive system. The set of axioms A is consistent when \varphi, \lnot \varphi \in \langle A \rangle for no formula \varphi. If there e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]