Shephard's Problem
   HOME
*





Shephard's Problem
In mathematics, Shephard's problem, is the following geometrical question asked by Geoffrey Colin Shephard in 1964: if ''K'' and ''L'' are centrally symmetric convex bodies In mathematics, a convex body in n-dimensional Euclidean space \R^n is a compact convex set with non-empty interior. A convex body K is called symmetric if it is centrally symmetric with respect to the origin; that is to say, a point x lies in ... in ''n''-dimensional Euclidean space such that whenever ''K'' and ''L'' are projection (mathematics), projected onto a hyperplane, the volume of the projection of ''K'' is smaller than the volume of the projection of ''L'', then does it follow that the volume of ''K'' is smaller than that of ''L''? In this case, "centrally symmetric" means that the Reflection symmetry, reflection of ''K'' in the origin, ''−K'', is a translate of ''K'', and similarly for ''L''. If ''k'' : R''n'' → Π''k'' is a projection (mathematics), projection of R'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Geoffrey Colin Shephard
Geoffrey Colin Shephard is a mathematician who works on convex geometry and reflection groups. He asked Shephard's problem on the volumes of projected convex bodies, posed another problem on polyhedral nets, proved the Shephard–Todd theorem in invariant theory of finite groups, began the study of complex polytopes, and classified the complex reflection groups. Shephard earned his Ph.D. in 1954 from Queens' College, Cambridge, under the supervision of J. A. Todd. He was a professor of mathematics at the University of East Anglia The University of East Anglia (UEA) is a public research university in Norwich, England. Established in 1963 on a campus west of the city centre, the university has four faculties and 26 schools of study. The annual income of the institution f ... until his retirement.Retired Faculty
University of East Anglia School of M ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Convex Body
In mathematics, a convex body in n-dimensional Euclidean space \R^n is a compact convex set with non-empty interior. A convex body K is called symmetric if it is centrally symmetric with respect to the origin; that is to say, a point x lies in K if and only if its antipode, - x also lies in K. Symmetric convex bodies are in a one-to-one correspondence with the unit balls of norms on \R^n. Important examples of convex bodies are the Euclidean ball, the hypercube In geometry, a hypercube is an ''n''-dimensional analogue of a square () and a cube (). It is a closed, compact, convex figure whose 1- skeleton consists of groups of opposite parallel line segments aligned in each of the space's dimensions, ... and the cross-polytope. See also * * References * {{Authority control Multi-dimensional geometry ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dimension
In physics and mathematics, the dimension of a Space (mathematics), mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any Point (geometry), point within it. Thus, a Line (geometry), line has a dimension of one (1D) because only one coordinate is needed to specify a point on itfor example, the point at 5 on a number line. A Surface (mathematics), surface, such as the Boundary (mathematics), boundary of a Cylinder (geometry), cylinder or sphere, has a dimension of two (2D) because two coordinates are needed to specify a point on itfor example, both a latitude and longitude are required to locate a point on the surface of a sphere. A two-dimensional Euclidean space is a two-dimensional space on the Euclidean plane, plane. The inside of a cube, a cylinder or a sphere is three-dimensional (3D) because three coordinates are needed to locate a point within these spaces. In classical mechanics, space and time are different categ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Euclidean Space
Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's Elements, Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean spaces of any positive integer dimension (mathematics), dimension, including the three-dimensional space and the ''Euclidean plane'' (dimension two). The qualifier "Euclidean" is used to distinguish Euclidean spaces from other spaces that were later considered in physics and modern mathematics. Ancient History of geometry#Greek geometry, Greek geometers introduced Euclidean space for modeling the physical space. Their work was collected by the Greek mathematics, ancient Greek mathematician Euclid in his ''Elements'', with the great innovation of ''mathematical proof, proving'' all properties of the space as theorems, by starting from a few fundamental properties, called ''postulates'', which either were considered as eviden ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Projection (mathematics)
In mathematics, a projection is a mapping of a set (or other mathematical structure) into a subset (or sub-structure), which is equal to its square for mapping composition, i.e., which is idempotent. The restriction to a subspace of a projection is also called a ''projection'', even if the idempotence property is lost. An everyday example of a projection is the casting of shadows onto a plane (sheet of paper): the projection of a point is its shadow on the sheet of paper, and the projection (shadow) of a point on the sheet of paper is that point itself (idempotency). The shadow of a three-dimensional sphere is a closed disk. Originally, the notion of projection was introduced in Euclidean geometry to denote the projection of the three-dimensional Euclidean space onto a plane in it, like the shadow example. The two main projections of this kind are: * The projection from a point onto a plane or central projection: If ''C'' is a point, called the center of projection, then the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hyperplane
In geometry, a hyperplane is a subspace whose dimension is one less than that of its ''ambient space''. For example, if a space is 3-dimensional then its hyperplanes are the 2-dimensional planes, while if the space is 2-dimensional, its hyperplanes are the 1-dimensional lines. This notion can be used in any general space in which the concept of the dimension of a subspace is defined. In different settings, hyperplanes may have different properties. For instance, a hyperplane of an -dimensional affine space is a flat subset with dimension and it separates the space into two half spaces. While a hyperplane of an -dimensional projective space does not have this property. The difference in dimension between a subspace and its ambient space is known as the codimension of with respect to . Therefore, a necessary and sufficient condition for to be a hyperplane in is for to have codimension one in . Technical description In geometry, a hyperplane of an ''n''-dimensi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Volume
Volume is a measure of occupied three-dimensional space. It is often quantified numerically using SI derived units (such as the cubic metre and litre) or by various imperial or US customary units (such as the gallon, quart, cubic inch). The definition of length (cubed) is interrelated with volume. The volume of a container is generally understood to be the capacity of the container; i.e., the amount of fluid (gas or liquid) that the container could hold, rather than the amount of space the container itself displaces. In ancient times, volume is measured using similar-shaped natural containers and later on, standardized containers. Some simple three-dimensional shapes can have its volume easily calculated using arithmetic formulas. Volumes of more complicated shapes can be calculated with integral calculus if a formula exists for the shape's boundary. Zero-, one- and two-dimensional objects have no volume; in fourth and higher dimensions, an analogous concept to the normal vo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Reflection Symmetry
In mathematics, reflection symmetry, line symmetry, mirror symmetry, or mirror-image symmetry is symmetry with respect to a reflection. That is, a figure which does not change upon undergoing a reflection has reflectional symmetry. In 2D there is a line/axis of symmetry, in 3D a plane of symmetry. An object or figure which is indistinguishable from its transformed image is called mirror symmetric. In conclusion, a line of symmetry splits the shape in half and those halves should be identical. Symmetric function In formal terms, a mathematical object is symmetric with respect to a given operation such as reflection, rotation or translation, if, when applied to the object, this operation preserves some property of the object. The set of operations that preserve a given property of the object form a group. Two objects are symmetric to each other with respect to a given group of operations if one is obtained from the other by some of the operations (and vice versa). The symm ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Minkowski's First Inequality For Convex Bodies
In mathematics, Minkowski's first inequality for convex bodies is a geometrical result due to the German mathematician Hermann Minkowski. The inequality is closely related to the Brunn–Minkowski inequality and the isoperimetric inequality. Statement of the inequality Let ''K'' and ''L'' be two ''n''-dimensional convex bodies in ''n''-dimensional Euclidean space R''n''. Define a quantity ''V''1(''K'', ''L'') by :n V_ (K, L) = \lim_ \frac, where ''V'' denotes the ''n''-dimensional Lebesgue measure and + denotes the Minkowski sum. Then :V_ (K, L) \geq V(K)^ V(L)^, with equality if and only if ''K'' and ''L'' are homothetic, i.e. are equal up to translation and dilation. Remarks * ''V''1 is just one example of a class of quantities known as ''mixed volumes''. * If ''L'' is the ''n''-dimensional unit ball Unit may refer to: Arts and entertainment * UNIT, a fictional military organization in the science fiction television series ''Doctor Who'' * Unit of action, a discrete ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Projection Body
In convex geometry, the projection body \Pi K of a convex body K in ''n''-dimensional Euclidean space is the convex body such that for any vector u\in S^, the support function of \Pi K in the direction ''u'' is the (''n'' – 1)-dimensional volume of the projection of ''K'' onto the hyperplane orthogonal to ''u''. Minkowski showed that the projection body of a convex body is convex. and used projection bodies in their solution to Shephard's problem. For K a convex body, let \Pi^\circ K denote the polar body of its projection body. There are two remarkable affine isoperimetric inequality for this body. proved that for all convex bodies K, : V_n(K)^ V_n(\Pi^\circ K)\le V_n(B^n)^ V_n(\Pi^\circ B^n), where B^n denotes the ''n''-dimensional unit ball and V_n is ''n''-dimensional volume, and there is equality precisely for ellipsoids. proved that for all convex bodies K, : V_n(K)^ V_n(\Pi^\circ K)\ge V_n(T^n)^ V_n(\Pi^\circ T^n), where T^n denotes any n-dimensional simplex ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Busemann–Petty Problem
In the mathematical field of convex geometry, the Busemann–Petty problem, introduced by , asks whether it is true that a symmetric convex body with larger central hyperplane sections has larger volume. More precisely, if ''K'', ''T'' are symmetric convex bodies in R''n'' such that : \mathrm_ \, (K \cap A) \leq \mathrm_ \, (T \cap A) for every hyperplane ''A'' passing through the origin, is it true that Vol''n'' ''K'' ≤ Vol''n'' ''T''? Busemann and Petty showed that the answer is positive if ''K'' is a ball. In general, the answer is positive in dimensions at most 4, and negative in dimensions at least 5. History showed that the Busemann–Petty problem has a negative solution in dimensions at least 12, and this bound was reduced to dimensions at least 5 by several other authors. pointed out a particularly simple counterexample: all sections of the unit volume cube have measure at most , while in dimensions at least 10 all central sections of the u ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]