Semiperfect Number
   HOME
*





Semiperfect Number
In number theory, a semiperfect number or pseudoperfect number is a natural number ''n'' that is equal to the sum of all or some of its proper divisors. A semiperfect number that is equal to the sum of all its proper divisors is a perfect number. The first few semiperfect numbers are: 6, 12, 18, 20, 24, 28, 30, 36, 40, ... Properties * Every multiple of a semiperfect number is semiperfect.Zachariou+Zachariou (1972) A semiperfect number that is not divisible by any smaller semiperfect number is called ''primitive''. * Every number of the form 2''m''''p'' for a natural number ''m'' and an odd prime number ''p'' such that ''p'' < 2''m''+1 is also semiperfect. ** In particular, every number of the form 2''m''(2''m''+1 − 1) is semiperfect, and indeed perfect if 2''m''+1 − 1 is a

picture info

Cuisenaire Rods
Cuisenaire rods are mathematics learning aids for students that provide an interactive, hands-on way to explore mathematics and learn mathematical concepts, such as the four basic arithmetical operations, working with fractions and finding divisors. In the early 1950s, Caleb Gattegno popularised this set of coloured number rods created by Georges Cuisenaire (1891–1975), a Belgan primary school teacher, who called the rods ''réglettes''. According to Gattegno, "Georges Cuisenaire showed in the early 1950s that students who had been taught traditionally, and were rated 'weak', took huge strides when they shifted to using the material. They became 'very good' at traditional arithmetic when they were allowed to manipulate the rods." History The educationalists Maria Montessori and Friedrich Fröbel had used rods to represent numbers, but it was Georges Cuisenaire who introduced the rods that were to be used across the world from the 1950s onwards. In 1952 he published ''Les nombres ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Parity (mathematics)
In mathematics, parity is the property of an integer of whether it is even or odd. An integer is even if it is a multiple of two, and odd if it is not.. For example, −4, 0, 82 are even because \begin -2 \cdot 2 &= -4 \\ 0 \cdot 2 &= 0 \\ 41 \cdot 2 &= 82 \end By contrast, −3, 5, 7, 21 are odd numbers. The above definition of parity applies only to integer numbers, hence it cannot be applied to numbers like 1/2 or 4.201. See the section "Higher mathematics" below for some extensions of the notion of parity to a larger class of "numbers" or in other more general settings. Even and odd numbers have opposite parities, e.g., 22 (even number) and 13 (odd number) have opposite parities. In particular, the parity of zero is even. Any two consecutive integers have opposite parity. A number (i.e., integer) expressed in the decimal numeral system is even or odd according to whether its last digit is even or odd. That is, if the last digit is 1, 3, 5, 7, or 9, then it is odd; otherwis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Paul Erdős
Paul Erdős ( hu, Erdős Pál ; 26 March 1913 – 20 September 1996) was a Hungarian mathematician. He was one of the most prolific mathematicians and producers of mathematical conjectures of the 20th century. pursued and proposed problems in discrete mathematics, graph theory, number theory, mathematical analysis, approximation theory, set theory, and probability theory. Much of his work centered around discrete mathematics, cracking many previously unsolved problems in the field. He championed and contributed to Ramsey theory, which studies the conditions in which order necessarily appears. Overall, his work leaned towards solving previously open problems, rather than developing or exploring new areas of mathematics. Erdős published around 1,500 mathematical papers during his lifetime, a figure that remains unsurpassed. He firmly believed mathematics to be a social activity, living an itinerant lifestyle with the sole purpose of writing mathematical papers with other mathem ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


104 (number)
104 (one hundred ndfour) is the natural number following 103 and preceding 105. In mathematics 104 is a primitive semiperfect number and a composite number, with its divisors being 1, 2, 4, 8, 13, 26, 52 and 104. As it has 8 divisors total, and 8 is one of those divisors, 104 is a refactorable number. The distinct prime factors of 104 add up to 15, and so do the ones of 105, hence the two numbers form a Ruth-Aaron pair under the first definition. In regular geometry, 104 is the smallest number of unit line segments that can exist in a plane with four of them touching at every vertex.A figure made up of a row of 4 adjacent congruent rectangles is divided into 104 regions upon drawing diagonals of all possible rectangles φ(104) = φ(σ(104)). In science *The atomic number of rutherfordium. *Number of degrees Fahrenheit corresponding to 40 Celsius. In other fields 104 is also: *The number of Corinthian columns in the Temple of Olympian Zeus, the largest temple ever built ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

88 (number)
88 (eighty-eight) is the natural number following 87 and preceding 89. In mathematics 88 is: * a refactorable number. * a primitive semiperfect number. * an untouchable number. * a hexadecagonal number. * an Erdős–Woods number, since it is possible to find sequences of 88 consecutive integers such that each inner member shares a factor with either the first or the last member. * a palindromic number in bases 5 (3235), 10 (8810), 21 (4421), and 43 (2243). * a repdigit in bases 10, 21 and 43. * a 2-automorphic number. * the smallest positive integer with a Zeckendorf representation requiring 5 Fibonacci numbers. * a strobogrammatic number. * the largest number in English not containing the letter 'n' in its name, when using short scale. 88 and 945 are the smallest coprime abundant numbers. In science and technology *The atomic number of the element radium. * The number of constellations in the sky as defined by the International Astronomical Union. * Messier object M88, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Set (mathematics)
A set is the mathematical model for a collection of different things; a set contains '' elements'' or ''members'', which can be mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other sets. The set with no element is the empty set; a set with a single element is a singleton. A set may have a finite number of elements or be an infinite set. Two sets are equal if they have precisely the same elements. Sets are ubiquitous in modern mathematics. Indeed, set theory, more specifically Zermelo–Fraenkel set theory, has been the standard way to provide rigorous foundations for all branches of mathematics since the first half of the 20th century. History The concept of a set emerged in mathematics at the end of the 19th century. The German word for set, ''Menge'', was coined by Bernard Bolzano in his work ''Paradoxes of the Infinite''. Georg Cantor, one of the founders of set theory, gave the following defin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Natural Density
In number theory, natural density (also referred to as asymptotic density or arithmetic density) is one method to measure how "large" a subset of the set of natural numbers is. It relies chiefly on the probability of encountering members of the desired subset when combing through the interval as ''n '' grows large. Intuitively, it is thought that there are more positive integers than perfect squares, since every perfect square is already positive, and many other positive integers exist besides. However, the set of positive integers is not in fact larger than the set of perfect squares: both sets are infinite and countable and can therefore be put in one-to-one correspondence. Nevertheless if one goes through the natural numbers, the squares become increasingly scarce. The notion of natural density makes this intuition precise for many, but not all, subsets of the naturals (see Schnirelmann density, which is similar to natural density but defined for all subsets of \mathbb). If ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Power Of Two
A power of two is a number of the form where is an integer, that is, the result of exponentiation with number two as the base and integer  as the exponent. In a context where only integers are considered, is restricted to non-negative values, so there are 1, 2, and 2 multiplied by itself a certain number of times. The first ten powers of 2 for non-negative values of are: : 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, ... Because two is the base of the binary numeral system, powers of two are common in computer science. Written in binary, a power of two always has the form 100...000 or 0.00...001, just like a power of 10 in the decimal system. Computer science Two to the exponent of , written as , is the number of ways the bits in a binary word of length can be arranged. A word, interpreted as an unsigned integer, can represent values from 0 () to  () inclusively. Corresponding signed integer values can be positive, negative and zero; see signed n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Practical Number
In number theory, a practical number or panarithmic number is a positive integer n such that all smaller positive integers can be represented as sums of distinct divisors of n. For example, 12 is a practical number because all the numbers from 1 to 11 can be expressed as sums of its divisors 1, 2, 3, 4, and 6: as well as these divisors themselves, we have 5 = 3 + 2, 7 = 6 + 1, 8 = 6 + 2, 9 = 6 + 3, 10 = 6 + 3 + 1, and 11 = 6 + 3 + 2. The sequence of practical numbers begins Practical numbers were used by Fibonacci in his Liber Abaci (1202) in connection with the problem of representing rational numbers as Egyptian fractions. Fibonacci does not formally define practical numbers, but he gives a table of Egyptian fraction expansions for fractions with practical denominators.. The name "practical number" is due to . He noted that "the subdivisions of money, weights, and measures involve numbers like 4, 12, 16, 20 and 28 which are usually supposed to be so inconvenient as to dese ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Primary Pseudoperfect Number
In mathematics, and particularly in number theory, ''N'' is a primary pseudoperfect number if it satisfies the Egyptian fraction equation :\frac + \sum_\frac = 1, where the sum is over only the prime divisors of ''N''. Properties Equivalently, ''N'' is a primary pseudoperfect number if it satisfies :1 + \sum_ \frac = N. Except for the primary pseudoperfect number ''N'' = 2, this expression gives a representation for ''N'' as the sum of distinct divisors of ''N''. Therefore, each primary pseudoperfect number ''N'' (except ''N'' = 2) is also pseudoperfect. The eight known primary pseudoperfect numbers are : 2, 6, 42, 1806, 47058, 2214502422, 52495396602, 8490421583559688410706771261086 . The first four of these numbers are one less than the corresponding numbers in Sylvester's sequence, but then the two sequences diverge. It is unknown whether there are infinitely many primary pseudoperfect numbers, or whether there are any odd primary pseudoperfect number ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Weird Number
In number theory, a weird number is a natural number that is abundant but not semiperfect. In other words, the sum of the proper divisors (divisors including 1 but not itself) of the number is greater than the number, but no subset of those divisors sums to the number itself. Examples The smallest weird number is 70. Its proper divisors are 1, 2, 5, 7, 10, 14, and 35; these sum to 74, but no subset of these sums to 70. The number 12, for example, is abundant but ''not'' weird, because the proper divisors of 12 are 1, 2, 3, 4, and 6, which sum to 16; but 2 + 4 + 6 = 12. The first few weird numbers are : 70, 836, 4030, 5830, 7192, 7912, 9272, 10430, 10570, 10792, 10990, 11410, 11690, 12110, 12530, 12670, 13370, 13510, 13790, 13930, 14770, ... . Properties Infinitely many weird numbers exist. For example, 70''p'' is weird for all primes ''p'' ≥ 149. In fact, the set of weird numbers has positive asymptotic density. It is not known if any od ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Abundant Number
In number theory, an abundant number or excessive number is a number for which the sum of its proper divisors is greater than the number. The integer 12 is the first abundant number. Its proper divisors are 1, 2, 3, 4 and 6 for a total of 16. The amount by which the sum exceeds the number is the abundance. The number 12 has an abundance of 4, for example. Definition A number ''n'' for which the ''sum'' ''of'' ''divisors'' ''σ''(''n'') > 2''n'', or, equivalently, the sum of proper divisors (or aliquot sum) ''s''(''n'') > ''n''. Abundance is the value ''σ''(''n'') − ''2n'' (or ''s''(''n'') − ''n''). Examples The first 28 abundant numbers are: :12, 18, 20, 24, 30, 36, 40, 42, 48, 54, 56, 60, 66, 70, 72, 78, 80, 84, 88, 90, 96, 100, 102, 104, 108, 112, 114, 120, ... . For example, the proper divisors of 24 are 1, 2, 3, 4, 6, 8, and 12, whose sum is 36. Because 36 is greater than 24, the number 24 is abundant. Its abundance is 36 − 24 = 12. Prope ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]