Weird Number
In number theory, a weird number is a natural number that is abundant but not semiperfect. In other words, the sum of the proper divisors (divisors including 1 but not itself) of the number is greater than the number, but no subset of those divisors sums to the number itself. Examples The smallest weird number is 70. Its proper divisors are 1, 2, 5, 7, 10, 14, and 35; these sum to 74, but no subset of these sums to 70. The number 12, for example, is abundant but ''not'' weird, because the proper divisors of 12 are 1, 2, 3, 4, and 6, which sum to 16; but 2 + 4 + 6 = 12. The first few weird numbers are : 70, 836, 4030, 5830, 7192, 7912, 9272, 10430, 10570, 10792, 10990, 11410, 11690, 12110, 12530, 12670, 13370, 13510, 13790, 13930, 14770, ... . Properties Infinitely many weird numbers exist. For example, 70''p'' is weird for all primes ''p'' ≥ 149. In fact, the set of weird numbers has positive asymptotic density. It is not known if any od ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Two's Complement
Two's complement is a mathematical operation to reversibly convert a positive binary number into a negative binary number with equivalent (but negative) value, using the binary digit with the greatest place value (the leftmost bit in big- endian numbers, rightmost bit in little-endian numbers) to indicate whether the binary number is positive or negative (the sign). It is used in computer science as the most common method of representing signed (positive, negative, and zero) integers on computers, and more generally, fixed point binary values. When the most significant bit is a one, the number is signed as negative. . Two's complement is executed by 1) inverting (i.e. flipping) all bits, then 2) adding a place value of 1 to the inverted number. For example, say the number −6 is of interest. +6 in binary is 0110 (the leftmost most significant bit is needed for the sign; positive 6 is not 110 because it would be interpreted as -2). Step one is to flip all bits, yielding 1001. St ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Asymptotic Density
In number theory, natural density (also referred to as asymptotic density or arithmetic density) is one method to measure how "large" a subset of the set of natural numbers is. It relies chiefly on the probability of encountering members of the desired subset when combing through the interval as ''n '' grows large. Intuitively, it is thought that there are more positive integers than perfect squares, since every perfect square is already positive, and many other positive integers exist besides. However, the set of positive integers is not in fact larger than the set of perfect squares: both sets are infinite and countable and can therefore be put in one-to-one correspondence. Nevertheless if one goes through the natural numbers, the squares become increasingly scarce. The notion of natural density makes this intuition precise for many, but not all, subsets of the naturals (see Schnirelmann density, which is similar to natural density but defined for all subsets of \mathbb). If ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Untouchable Number
An untouchable number is a positive integer that cannot be expressed as the sum of all the proper divisors of any positive integer (including the untouchable number itself). That is, these numbers are not in the image of the aliquot sum function. Their study goes back at least to Abu Mansur al-Baghdadi (circa 1000 AD), who observed that both 2 and 5 are untouchable. Examples For example, the number 4 is not untouchable as it is equal to the sum of the proper divisors of 9: 1 + 3 = 4. The number 5 is untouchable as it is not the sum of the proper divisors of any positive integer: 5 = 1 + 4 is the only way to write 5 as the sum of distinct positive integers including 1, but if 4 divides a number, 2 does also, so 1 + 4 cannot be the sum of all of any number's proper divisors (since the list of factors would have to contain both 4 and 2). The first few untouchable numbers are: : 2, 5, 52, 88, 96, 120, 124, 146, 162, 188, 2 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cramér's Conjecture
In number theory, Cramér's conjecture, formulated by the Swedish mathematician Harald Cramér in 1936, is an estimate for the size of gaps between consecutive prime numbers: intuitively, that gaps between consecutive primes are always small, and the conjecture quantifies asymptotically just how small they must be. It states that :p_-p_n=O((\log p_n)^2),\ where ''p''''n'' denotes the ''n''th prime number, ''O'' is big O notation, and "log" is the natural logarithm. While this is the statement explicitly conjectured by Cramér, his heuristic actually supports the stronger statement :\limsup_ \frac = 1, and sometimes this formulation is called Cramér's conjecture. However, this stronger version is not supported by more accurate heuristic models, which nevertheless support the first version of Cramér's conjecture. Neither form has yet been proven or disproven. Conditional proven results on prime gaps Cramér gave a conditional proof of the much weaker statement that :p_-p_n = O(\s ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Giuseppe Melfi
Giuseppe Melfi (June 11, 1967) is an Italo-Swiss mathematician who works on practical numbers and modular forms. Career He gained his PhD in mathematics in 1997 at the University of Pisa. After some time spent at the University of Lausanne during 1997-2000, Melfi was appointed at the University of Neuchâtel, as well as at the University of Applied Sciences Western Switzerland and at the local University of Teacher Education. Work His major contributions are in the field of practical numbers. This prime-like sequence of numbers is known for having an asymptotic behavior and other distribution properties similar to the sequence of primes. Melfi proved two conjectures both raised in 1984 one of which is the corresponding of the Goldbach conjecture for practical numbers: every even number is a sum of two practical numbers. He also proved that there exist infinitely many triples of practical numbers of the form m-2,m,m+2. Another notable contribution has been in an application of t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Conjecture
In mathematics, a conjecture is a conclusion or a proposition that is proffered on a tentative basis without proof. Some conjectures, such as the Riemann hypothesis (still a conjecture) or Fermat's Last Theorem (a conjecture until proven in 1995 by Andrew Wiles), have shaped much of mathematical history as new areas of mathematics are developed in order to prove them. Important examples Fermat's Last Theorem In number theory, Fermat's Last Theorem (sometimes called Fermat's conjecture, especially in older texts) states that no three positive integers a, ''b'', and ''c'' can satisfy the equation ''a^n + b^n = c^n'' for any integer value of ''n'' greater than two. This theorem was first conjectured by Pierre de Fermat in 1637 in the margin of a copy of '' Arithmetica'', where he claimed that he had a proof that was too large to fit in the margin. The first successful proof was released in 1994 by Andrew Wiles, and formally published in 1995, after 358 years of effort by mathe ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Multiple (mathematics)
In mathematics, a multiple is the product of any quantity and an integer. In other words, for the quantities ''a'' and ''b'', it can be said that ''b'' is a multiple of ''a'' if ''b'' = ''na'' for some integer ''n'', which is called the multiplier. If ''a'' is not zero, this is equivalent to saying that b/a is an integer. When ''a'' and ''b'' are both integers, and ''b'' is a multiple of ''a'', then ''a'' is called a divisor of ''b''. One says also that ''a'' divides ''b''. If ''a'' and ''b'' are not integers, mathematicians prefer generally to use integer multiple instead of ''multiple'', for clarification. In fact, ''multiple'' is used for other kinds of product; for example, a polynomial ''p'' is a multiple of another polynomial ''q'' if there exists third polynomial ''r'' such that ''p'' = ''qr''. In some texts, "''a'' is a submultiple of ''b''" has the meaning of "''a'' being a unit fraction of ''b''" or, equivalently, "''b'' being an integer multiple of ''a''". This termino ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Sum Of Divisors
In mathematics, and specifically in number theory, a divisor function is an arithmetic function related to the divisors of an integer. When referred to as ''the'' divisor function, it counts the ''number of divisors of an integer'' (including 1 and the number itself). It appears in a number of remarkable identities, including relationships on the Riemann zeta function and the Eisenstein series of modular forms. Divisor functions were studied by Ramanujan, who gave a number of important congruences and identities; these are treated separately in the article Ramanujan's sum. A related function is the divisor summatory function, which, as the name implies, is a sum over the divisor function. Definition The sum of positive divisors function σ''z''(''n''), for a real or complex number ''z'', is defined as the sum of the ''z''th powers of the positive divisors of ''n''. It can be expressed in sigma notation as :\sigma_z(n)=\sum_ d^z\,\! , where is shorthand for "''d'' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Integer
An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign (−1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language of mathematics, the set of integers is often denoted by the boldface or blackboard bold \mathbb. The set of natural numbers \mathbb is a subset of \mathbb, which in turn is a subset of the set of all rational numbers \mathbb, itself a subset of the real numbers \mathbb. Like the natural numbers, \mathbb is countably infinite. An integer may be regarded as a real number that can be written without a fractional component. For example, 21, 4, 0, and −2048 are integers, while 9.75, , and are not. The integers form the smallest group and the smallest ring containing the natural numbers. In algebraic number theory, the integers are sometimes qualified as rational integers to distinguish them from the more general algebraic integers ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Parity (mathematics)
In mathematics, parity is the property of an integer of whether it is even or odd. An integer is even if it is a multiple of two, and odd if it is not.. For example, −4, 0, 82 are even because \begin -2 \cdot 2 &= -4 \\ 0 \cdot 2 &= 0 \\ 41 \cdot 2 &= 82 \end By contrast, −3, 5, 7, 21 are odd numbers. The above definition of parity applies only to integer numbers, hence it cannot be applied to numbers like 1/2 or 4.201. See the section "Higher mathematics" below for some extensions of the notion of parity to a larger class of "numbers" or in other more general settings. Even and odd numbers have opposite parities, e.g., 22 (even number) and 13 (odd number) have opposite parities. In particular, the parity of zero is even. Any two consecutive integers have opposite parity. A number (i.e., integer) expressed in the decimal numeral system is even or odd according to whether its last digit is even or odd. That is, if the last digit is 1, 3, 5, 7, or 9, then it is odd; otherwis ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics Of Computation
''Mathematics of Computation'' is a bimonthly mathematics journal focused on computational mathematics. It was established in 1943 as ''Mathematical Tables and other Aids to Computation'', obtaining its current name in 1960. Articles older than five years are available electronically free of charge. Abstracting and indexing The journal is abstracted and indexed in Mathematical Reviews, Zentralblatt MATH, Science Citation Index, CompuMath Citation Index, and Current Contents/Physical, Chemical & Earth Sciences. According to the ''Journal Citation Reports'', the journal has a 2020 impact factor The impact factor (IF) or journal impact factor (JIF) of an academic journal is a scientometric index calculated by Clarivate that reflects the yearly mean number of citations of articles published in the last two years in a given journal, as ... of 2.417. References External links * Delayed open access journals English-language journals Mathematics journals Publications ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Set (mathematics)
A set is the mathematical model for a collection of different things; a set contains '' elements'' or ''members'', which can be mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other sets. The set with no element is the empty set; a set with a single element is a singleton. A set may have a finite number of elements or be an infinite set. Two sets are equal if they have precisely the same elements. Sets are ubiquitous in modern mathematics. Indeed, set theory, more specifically Zermelo–Fraenkel set theory, has been the standard way to provide rigorous foundations for all branches of mathematics since the first half of the 20th century. History The concept of a set emerged in mathematics at the end of the 19th century. The German word for set, ''Menge'', was coined by Bernard Bolzano in his work ''Paradoxes of the Infinite''. Georg Cantor, one of the founders of set theory, gave the following defin ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |