HOME
*





Szász–Mirakyan Operator
In functional analysis, a discipline within mathematics, the Szász–Mirakyan operators (also spelled "Mirakjan" and "Mirakian") are generalizations of Bernstein polynomials to infinite intervals, introduced by Otto Szász in 1950 and G. M. Mirakjan in 1941. They are defined by :\left mathcal_n(f)\rightx) := e^\sum_^\infty where x\ina theorem stating that Bernstein polynomials approximate continuous functions on ,1 Generalizations A Kantorovich Leonid Vitalyevich Kantorovich ( rus, Леони́д Вита́льевич Канторо́вич, , p=lʲɪɐˈnʲit vʲɪˈtalʲjɪvʲɪtɕ kəntɐˈrovʲɪtɕ, a=Ru-Leonid_Vitaliyevich_Kantorovich.ogg; 19 January 19127 April 1986) was a Soviet ...-type generalization is sometimes discussed in the literature. These generalizations are also called the Szász–Mirakjan–Kantorovich operators. In 1976, C. P. May showed that the Baskakov operators can reduce to the Szász–Mirakyan operators. References * * (See also: Favard oper ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Functional Analysis
Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (e.g. Inner product space#Definition, inner product, Norm (mathematics)#Definition, norm, Topological space#Definition, topology, etc.) and the linear transformation, linear functions defined on these spaces and respecting these structures in a suitable sense. The historical roots of functional analysis lie in the study of function space, spaces of functions and the formulation of properties of transformations of functions such as the Fourier transform as transformations defining continuous function, continuous, unitary operator, unitary etc. operators between function spaces. This point of view turned out to be particularly useful for the study of differential equations, differential and integral equations. The usage of the word ''functional (mathematics), functional'' as a noun goes back to the calculus of variati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bernstein Polynomials
In the mathematical field of numerical analysis, a Bernstein polynomial is a polynomial that is a linear combination of Bernstein basis polynomials. The idea is named after Sergei Natanovich Bernstein. A numerically stable way to evaluate polynomials in Bernstein form is de Casteljau's algorithm. Polynomials in Bernstein form were first used by Bernstein in a constructive proof for the Weierstrass approximation theorem. With the advent of computer graphics, Bernstein polynomials, restricted to the interval , 1 became important in the form of Bézier curves. Definition The ''n''+1 Bernstein basis polynomials of degree ''n'' are defined as : b_(x) = \binom x^ \left( 1 - x \right)^, \quad \nu = 0, \ldots, n, where \tbinom is a binomial coefficient. So, for example, b_(x) = \tbinomx^2(1-x)^3 = 10x^2(1-x)^3. The first few Bernstein basis polynomials for blending 1, 2, 3 or 4 values together are: : \begin b_(x) & = 1, \\ b_(x) & = 1 - x, & b_(x) & = x \\ b_(x) & = (1 - ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Otto Szász
Otto is a masculine German given name and a surname. It originates as an Old High German short form (variants ''Audo'', ''Odo'', ''Udo'') of Germanic names beginning in ''aud-'', an element meaning "wealth, prosperity". The name is recorded from the 7th century ( Odo, son of Uro, courtier of Sigebert III). It was the name of three 10th-century German kings, the first of whom was Otto I the Great, the first Holy Roman Emperor, founder of the Ottonian dynasty. The Gothic form of the prefix was ''auda-'' (as in e.g. '' Audaþius''), the Anglo-Saxon form was ''ead-'' (as in e.g. ''Eadmund''), and the Old Norse form was '' auð-''. The given name Otis arose from an English surname, which was in turn derived from ''Ode'', a variant form of ''Odo, Otto''. Due to Otto von Bismarck, the given name ''Otto'' was strongly associated with the German Empire in the later 19th century. It was comparatively frequently given in the United States (presumably in German American families) during ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Continuous Function
In mathematics, a continuous function is a function such that a continuous variation (that is a change without jump) of the argument induces a continuous variation of the value of the function. This means that there are no abrupt changes in value, known as '' discontinuities''. More precisely, a function is continuous if arbitrarily small changes in its value can be assured by restricting to sufficiently small changes of its argument. A discontinuous function is a function that is . Up until the 19th century, mathematicians largely relied on intuitive notions of continuity, and considered only continuous functions. The epsilon–delta definition of a limit was introduced to formalize the definition of continuity. Continuity is one of the core concepts of calculus and mathematical analysis, where arguments and values of functions are real and complex numbers. The concept has been generalized to functions between metric spaces and between topological spaces. The latter are the mo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Uniform Convergence
In the mathematical field of analysis, uniform convergence is a mode of convergence of functions stronger than pointwise convergence. A sequence of functions (f_n) converges uniformly to a limiting function f on a set E if, given any arbitrarily small positive number \epsilon, a number N can be found such that each of the functions f_N, f_,f_,\ldots differs from f by no more than \epsilon ''at every point'' x ''in'' E. Described in an informal way, if f_n converges to f uniformly, then the rate at which f_n(x) approaches f(x) is "uniform" throughout its domain in the following sense: in order to guarantee that f_n(x) falls within a certain distance \epsilon of f(x), we do not need to know the value of x\in E in question — there can be found a single value of N=N(\epsilon) ''independent of x'', such that choosing n\geq N will ensure that f_n(x) is within \epsilon of f(x) ''for all x\in E''. In contrast, pointwise convergence of f_n to f merely guarantees that for any x\in E given ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Bernstein Polynomial
In the mathematical field of numerical analysis, a Bernstein polynomial is a polynomial that is a linear combination of Bernstein basis polynomials. The idea is named after Sergei Natanovich Bernstein. A numerically stable way to evaluate polynomials in Bernstein form is de Casteljau's algorithm. Polynomials in Bernstein form were first used by Bernstein in a constructive proof for the Weierstrass approximation theorem. With the advent of computer graphics, Bernstein polynomials, restricted to the interval , 1 became important in the form of Bézier curves. Definition The ''n''+1 Bernstein basis polynomials of degree ''n'' are defined as : b_(x) = \binom x^ \left( 1 - x \right)^, \quad \nu = 0, \ldots, n, where \tbinom is a binomial coefficient. So, for example, b_(x) = \tbinomx^2(1-x)^3 = 10x^2(1-x)^3. The first few Bernstein basis polynomials for blending 1, 2, 3 or 4 values together are: : \begin b_(x) & = 1, \\ b_(x) & = 1 - x, & b_(x) & = x \\ b_(x) & = (1 - ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Leonid Kantorovich
Leonid Vitalyevich Kantorovich ( rus, Леони́д Вита́льевич Канторо́вич, , p=lʲɪɐˈnʲit vʲɪˈtalʲjɪvʲɪtɕ kəntɐˈrovʲɪtɕ, a=Ru-Leonid_Vitaliyevich_Kantorovich.ogg; 19 January 19127 April 1986) was a Soviet mathematician and economist, known for his theory and development of techniques for the optimal allocation of resources. He is regarded as the founder of linear programming. He was the winner of the Stalin Prize in 1949 and the Nobel Memorial Prize in Economic Sciences in 1975. Biography Kantorovich was born on 19 January 1912, to a Russian Jewish family. His father was a doctor practicing in Saint Petersburg. In 1926, at the age of fourteen, he began his studies at Leningrad State University. He graduated from the Faculty of Mathematics and Mechanics in 1930, and began his graduate studies. In 1934, at the age of 22 years, he became a full professor. Later, Kantorovich worked for the Soviet government. He was given the task of opti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Szász–Mirakjan–Kantorovich Operator
In functional analysis, a discipline within mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ..., the Szász–Mirakjan–Kantorovich operators are defined by : mathcal_n(f)x)=ne^\sum_^\infty where x\in ,\infty)\subset\mathbb and n\in\mathbb. See also *Szász–Mirakyan operator Notes References

* Approximation theory {{mathanalysis-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Baskakov Operators
In functional analysis, a branch of mathematics, the Baskakov operators are generalizations of Bernstein polynomials, Szász–Mirakyan operator In functional analysis, a discipline within mathematics, the Szász–Mirakyan operators (also spelled "Mirakjan" and "Mirakian") are generalizations of Bernstein polynomials to infinite intervals, introduced by Otto Szász in 1950 and G. M. Mira ...s, and Lupas operators. They are defined by : mathcal_n(f)x) = \sum_^\infty where x\in ,b)\subset\mathbb (b can be \infty), n\in\mathbb, and (\phi_n)_ is a sequence of functions defined on [0,b/math> that have the following properties for all n,k\in\mathbb: #\phi_n\in\mathcal^\infty[0,b]. Alternatively, \phi_n has a Taylor series on [0,b). #\phi_n(0) = 1 #\phi_n is completely monotone, i.e. (-1)^k\phi_n^\geq 0. #There is an integer c such that \phi_n^ = -n\phi_^ whenever n>\max\ They are named after V. A. Baskakov, who studied their convergence to bounded, continuous functions. Basic result ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Favard Operators
In functional analysis, a branch of mathematics, the Favard operators are defined by: : mathcal_n(f)x) = \frac \sum_^\infty where x\in\mathbb, n\in\mathbb. They are named after Jean Favard. Generalizations A common generalization is: : mathcal_n(f)x) = \frac \sum_^\infty where (\gamma_n)_^\infty is a positive sequence that converges to 0. This reduces to the classical Favard operators when \gamma_n^2=1/(2n). References * This paper also discussed Szász–Mirakyan operator In functional analysis, a discipline within mathematics, the Szász–Mirakyan operators (also spelled "Mirakjan" and "Mirakian") are generalizations of Bernstein polynomials to infinite intervals, introduced by Otto Szász in 1950 and G. M. Mira ...s, which is why Favard is sometimes credited with their development (e.g. Favard–Szász operators Footnotes Approximation theory {{mathanalysis-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Comptes Rendus De L'Académie Des Sciences De L'URSS
The ''Proceedings of the USSR Academy of Sciences'' (russian: Доклады Академии Наук СССР, ''Doklady Akademii Nauk SSSR'' (''DAN SSSR''), french: Comptes Rendus de l'Académie des Sciences de l'URSS) was a Soviet journal that was dedicated to publishing original, academic research papers in physics, mathematics, chemistry, geology, and biology. It was first published in 1933 and ended in 1992 with volume 322, issue 3. Today, it is continued by ''Doklady Akademii Nauk'' (russian: Доклады Академии Наук), which began publication in 1992. The journal is also known as the ''Proceedings of the Russian Academy of Sciences (RAS)''. ''Doklady'' has had a complicated publication and translation history. A number of translation journals exist which publish selected articles from the original by subject section; these are listed below. History The Russian Academy of Sciences dates from 1724, with a continuous series of variously named publications da ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]