HOME
*





System Of Imprimitivity
The concept of system of imprimitivity is used in mathematics, particularly in algebra and analysis, both within the context of the theory of group representations. It was used by George Mackey as the basis for his theory of induced unitary representations of locally compact groups. The simplest case, and the context in which the idea was first noticed, is that of finite groups (see primitive permutation group). Consider a group ''G'' and subgroups ''H'' and ''K'', with ''K'' contained in ''H''. Then the left cosets of ''H'' in ''G'' are each the union of left cosets of ''K''. Not only that, but translation (on one side) by any element ''g'' of ''G'' respects this decomposition. The connection with induced representations is that the permutation representation on cosets is the special case of induced representation, in which a representation is induced from a trivial representation. The structure, combinatorial in this case, respected by translation shows that either ''K'' is a ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Configuration Space (physics)
In classical mechanics, the parameters that define the configuration of a system are called ''generalized coordinates,'' and the space defined by these coordinates is called the configuration space of the physical system. It is often the case that these parameters satisfy mathematical constraints, such that the set of actual configurations of the system is a manifold in the space of generalized coordinates. This manifold is called the configuration manifold of the system. Notice that this is a notion of "unrestricted" configuration space, i.e. in which different point particles may occupy the same position. In mathematics, in particular in topology, a notion of "restricted" configuration space is mostly used, in which the diagonals, representing "colliding" particles, are removed. Example: a particle in 3D space The position of a single particle moving in ordinary Euclidean 3-space is defined by the vector q=(x,y,z), and therefore its ''configuration space'' is Q=\mathbb^3. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Unitary Representation
In mathematics, a unitary representation of a group ''G'' is a linear representation π of ''G'' on a complex Hilbert space ''V'' such that π(''g'') is a unitary operator for every ''g'' ∈ ''G''. The general theory is well-developed in case ''G'' is a locally compact ( Hausdorff) topological group and the representations are strongly continuous. The theory has been widely applied in quantum mechanics since the 1920s, particularly influenced by Hermann Weyl's 1928 book ''Gruppentheorie und Quantenmechanik''. One of the pioneers in constructing a general theory of unitary representations, for any group ''G'' rather than just for particular groups useful in applications, was George Mackey. Context in harmonic analysis The theory of unitary representations of topological groups is closely connected with harmonic analysis. In the case of an abelian group ''G'', a fairly complete picture of the representation theory of ''G'' is given by Pontryagin duality. In general, the unitary equ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hilbert Space
In mathematics, Hilbert spaces (named after David Hilbert) allow generalizing the methods of linear algebra and calculus from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise naturally and frequently in mathematics and physics, typically as function spaces. Formally, a Hilbert space is a vector space equipped with an inner product that defines a distance function for which the space is a complete metric space. The earliest Hilbert spaces were studied from this point of view in the first decade of the 20th century by David Hilbert, Erhard Schmidt, and Frigyes Riesz. They are indispensable tools in the theories of partial differential equations, quantum mechanics, Fourier analysis (which includes applications to signal processing and heat transfer), and ergodic theory (which forms the mathematical underpinning of thermodynamics). John von Neumann coined the term ''Hilbert space'' for the abstract concept that under ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Projection-valued Measure
In mathematics, particularly in functional analysis, a projection-valued measure (PVM) is a function defined on certain subsets of a fixed set and whose values are self-adjoint projections on a fixed Hilbert space. Projection-valued measures are formally similar to real-valued measures, except that their values are self-adjoint projections rather than real numbers. As in the case of ordinary measures, it is possible to integrate complex-valued functions with respect to a PVM; the result of such an integration is a linear operator on the given Hilbert space. Projection-valued measures are used to express results in spectral theory, such as the important spectral theorem for self-adjoint operators. The Borel functional calculus for self-adjoint operators is constructed using integrals with respect to PVMs. In quantum mechanics, PVMs are the mathematical description of projective measurements. They are generalized by positive operator valued measures (POVMs) in the same sense that ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Regular Representation
In mathematics, and in particular the theory of group representations, the regular representation of a group ''G'' is the linear representation afforded by the group action of ''G'' on itself by translation. One distinguishes the left regular representation λ given by left translation and the right regular representation ρ given by the inverse of right translation. Finite groups For a finite group ''G'', the left regular representation λ (over a field ''K'') is a linear representation on the ''K''-vector space ''V'' freely generated by the elements of ''G'', i. e. they can be identified with a basis of ''V''. Given ''g'' ∈ ''G'', λ''g'' is the linear map determined by its action on the basis by left translation by ''g'', i.e. :\lambda_:h\mapsto gh,\texth\in G. For the right regular representation ρ, an inversion must occur in order to satisfy the axioms of a representation. Specifically, given ''g'' ∈ ''G'', ρ''g'' is the linear map on ''V'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Character Theory
In mathematics, more specifically in group theory, the character of a group representation is a function on the group that associates to each group element the trace of the corresponding matrix. The character carries the essential information about the representation in a more condensed form. Georg Frobenius initially developed representation theory of finite groups entirely based on the characters, and without any explicit matrix realization of representations themselves. This is possible because a complex representation of a finite group is determined (up to isomorphism) by its character. The situation with representations over a field of positive characteristic, so-called "modular representations", is more delicate, but Richard Brauer developed a powerful theory of characters in this case as well. Many deep theorems on the structure of finite groups use characters of modular representations. Applications Characters of irreducible representations encode many important propert ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Well-defined
In mathematics, a well-defined expression or unambiguous expression is an expression whose definition assigns it a unique interpretation or value. Otherwise, the expression is said to be ''not well defined'', ill defined or ''ambiguous''. A function is well defined if it gives the same result when the representation of the input is changed without changing the value of the input. For instance, if ''f'' takes real numbers as input, and if ''f''(0.5) does not equal ''f''(1/2) then ''f'' is not well defined (and thus not a function). The term ''well defined'' can also be used to indicate that a logical expression is unambiguous or uncontradictory. A function that is not well defined is not the same as a function that is undefined. For example, if ''f''(''x'') = 1/''x'', then the fact that ''f''(0) is undefined does not mean that the ''f'' is ''not'' well defined – but that 0 is simply not in the domain of ''f''. Example Let A_0,A_1 be sets, let A = A_0 \cup A_1 and "define" f: A \ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Linearly Independent
In the theory of vector spaces, a set of vectors is said to be if there is a nontrivial linear combination of the vectors that equals the zero vector. If no such linear combination exists, then the vectors are said to be . These concepts are central to the definition of dimension. A vector space can be of finite dimension or infinite dimension depending on the maximum number of linearly independent vectors. The definition of linear dependence and the ability to determine whether a subset of vectors in a vector space is linearly dependent are central to determining the dimension of a vector space. Definition A sequence of vectors \mathbf_1, \mathbf_2, \dots, \mathbf_k from a vector space is said to be ''linearly dependent'', if there exist scalars a_1, a_2, \dots, a_k, not all zero, such that :a_1\mathbf_1 + a_2\mathbf_2 + \cdots + a_k\mathbf_k = \mathbf, where \mathbf denotes the zero vector. This implies that at least one of the scalars is nonzero, say a_1\ne 0, and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Linear Span
In mathematics, the linear span (also called the linear hull or just span) of a set of vectors (from a vector space), denoted , pp. 29-30, §§ 2.5, 2.8 is defined as the set of all linear combinations of the vectors in . It can be characterized either as the intersection of all linear subspaces that contain , or as the smallest subspace containing . The linear span of a set of vectors is therefore a vector space itself. Spans can be generalized to matroids and modules. To express that a vector space is a linear span of a subset , one commonly uses the following phrases—either: spans , is a spanning set of , is spanned/generated by , or is a generator or generator set of . Definition Given a vector space over a field , the span of a set of vectors (not necessarily infinite) is defined to be the intersection of all subspaces of that contain . is referred to as the subspace ''spanned by'' , or by the vectors in . Conversely, is called a ''spanning set'' of , and we ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Direct Sum Of Vector Spaces
In abstract algebra, the direct sum is a construction which combines several modules into a new, larger module. The direct sum of modules is the smallest module which contains the given modules as submodules with no "unnecessary" constraints, making it an example of a coproduct. Contrast with the direct product, which is the dual notion. The most familiar examples of this construction occur when considering vector spaces (modules over a field) and abelian groups (modules over the ring Z of integers). The construction may also be extended to cover Banach spaces and Hilbert spaces. See the article decomposition of a module for a way to write a module as a direct sum of submodules. Construction for vector spaces and abelian groups We give the construction first in these two cases, under the assumption that we have only two objects. Then we generalize to an arbitrary family of arbitrary modules. The key elements of the general construction are more clearly identified by conside ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Group Action (mathematics)
In mathematics, a group action on a space is a group homomorphism of a given group into the group of transformations of the space. Similarly, a group action on a mathematical structure is a group homomorphism of a group into the automorphism group of the structure. It is said that the group ''acts'' on the space or structure. If a group acts on a structure, it will usually also act on objects built from that structure. For example, the group of Euclidean isometries acts on Euclidean space and also on the figures drawn in it. For example, it acts on the set of all triangles. Similarly, the group of symmetries of a polyhedron acts on the vertices, the edges, and the faces of the polyhedron. A group action on a vector space is called a representation of the group. In the case of a finite-dimensional vector space, it allows one to identify many groups with subgroups of , the group of the invertible matrices of dimension over a field . The symmetric group acts on any set wit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]