Syntomic Cohomology
In algebraic geometry, the syntomic topology is a Grothendieck topology introduced by . Mazur defined a morphism to be syntomic if it is flat and locally a complete intersection. The syntomic topology is generated by surjective syntomic morphisms of affine schemes. References * External linksExplanationof the word "syntomic" by Barry Mazur Barry Charles Mazur (; born December 19, 1937) is an American mathematician and the Gerhard Gade University Professor at Harvard University. His contributions to mathematics include his contributions to Wiles's proof of Fermat's Last Theorem in .... *{{nlab, id=syntomic+cohomology, title=Syntomic cohomology Algebraic geometry ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algebraic Geometry
Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical problems about these sets of zeros. The fundamental objects of study in algebraic geometry are algebraic varieties, which are geometric manifestations of solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are: plane algebraic curves, which include lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscates and Cassini ovals. A point of the plane belongs to an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of the points of special interest like the singular points, the inflection points and the points at infinity. More advanced questions involve the topology of the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Grothendieck Topology
In category theory, a branch of mathematics, a Grothendieck topology is a structure on a category ''C'' that makes the objects of ''C'' act like the open sets of a topological space. A category together with a choice of Grothendieck topology is called a site. Grothendieck topologies axiomatize the notion of an open cover. Using the notion of covering provided by a Grothendieck topology, it becomes possible to define sheaves on a category and their cohomology. This was first done in algebraic geometry and algebraic number theory by Alexander Grothendieck to define the étale cohomology of a scheme. It has been used to define other cohomology theories since then, such as ℓ-adic cohomology, flat cohomology, and crystalline cohomology. While Grothendieck topologies are most often used to define cohomology theories, they have found other applications as well, such as to John Tate's theory of rigid analytic geometry. There is a natural way to associate a site to an ordinary top ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Morphism
In mathematics, particularly in category theory, a morphism is a structure-preserving map from one mathematical structure to another one of the same type. The notion of morphism recurs in much of contemporary mathematics. In set theory, morphisms are functions; in linear algebra, linear transformations; in group theory, group homomorphisms; in topology, continuous functions, and so on. In category theory, ''morphism'' is a broadly similar idea: the mathematical objects involved need not be sets, and the relationships between them may be something other than maps, although the morphisms between the objects of a given category have to behave similarly to maps in that they have to admit an associative operation similar to function composition. A morphism in category theory is an abstraction of a homomorphism. The study of morphisms and of the structures (called "objects") over which they are defined is central to category theory. Much of the terminology of morphisms, as well as the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Affine Scheme
In commutative algebra, the prime spectrum (or simply the spectrum) of a ring ''R'' is the set of all prime ideals of ''R'', and is usually denoted by \operatorname; in algebraic geometry it is simultaneously a topological space equipped with the sheaf of rings \mathcal. Zariski topology For any ideal ''I'' of ''R'', define V_I to be the set of prime ideals containing ''I''. We can put a topology on \operatorname(R) by defining the collection of closed sets to be :\. This topology is called the Zariski topology. A basis for the Zariski topology can be constructed as follows. For ''f'' ∈ ''R'', define ''D''''f'' to be the set of prime ideals of ''R'' not containing ''f''. Then each ''D''''f'' is an open subset of \operatorname(R), and \ is a basis for the Zariski topology. \operatorname(R) is a compact space, but almost never Hausdorff: in fact, the maximal ideals in ''R'' are precisely the closed points in this topology. By the same reasoning, it is not, in general, a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
American Mathematical Society
The American Mathematical Society (AMS) is an association of professional mathematicians dedicated to the interests of mathematical research and scholarship, and serves the national and international community through its publications, meetings, advocacy and other programs. The society is one of the four parts of the Joint Policy Board for Mathematics and a member of the Conference Board of the Mathematical Sciences. History The AMS was founded in 1888 as the New York Mathematical Society, the brainchild of Thomas Fiske, who was impressed by the London Mathematical Society on a visit to England. John Howard Van Amringe was the first president and Fiske became secretary. The society soon decided to publish a journal, but ran into some resistance, due to concerns about competing with the American Journal of Mathematics. The result was the ''Bulletin of the American Mathematical Society'', with Fiske as editor-in-chief. The de facto journal, as intended, was influential in in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Barry Mazur
Barry Charles Mazur (; born December 19, 1937) is an American mathematician and the Gerhard Gade University Professor at Harvard University. His contributions to mathematics include his contributions to Wiles's proof of Fermat's Last Theorem in number theory, Mazur's torsion theorem in arithmetic geometry, the Mazur swindle in geometric topology, and the Mazur manifold in differential topology. Life Born in New York City, Mazur attended the Bronx High School of Science and MIT, although he did not graduate from the latter on account of failing a then-present ROTC requirement. He was nonetheless accepted for graduate studies at Princeton University, from where he received his PhD in mathematics in 1959 after completing a doctoral dissertation titled "On embeddings of spheres." He then became a Junior Fellow at Harvard University from 1961 to 1964. He is the Gerhard Gade University Professor and a Senior Fellow at Harvard. He is the brother of Joseph Mazur and the father of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |