HOME
*



picture info

Symbolic Power Of A Prime Ideal
In algebra and algebraic geometry, given a commutative Noetherian ring R and an ideal I in it, the ''n''-th symbolic power of I is the ideal : I^ = \bigcap_ \varphi_P^(I^n R_P) where R_P is the localization of R at P, we set \varphi_P : R \to R_P is the canonical map from a ring to its localization, and the intersection runs through all of the associated primes of R/I. Though this definition does not require I to be prime, this assumption is often worked with because in the case of a prime ideal, the symbolic power can be equivalently defined as the I -primary component of I^n. Very roughly, it consists of functions with zeros of order ''n'' along the variety defined by I. We have: I^ = I and if I is a maximal ideal, then I^ = I^n. Symbolic powers induce the following chain of ideals: : I^=R\supset I=I^\supset I^\supset I^\supset I^\supset \cdots Uses The study and use of symbolic powers has a long history in commutative algebra. Krull’s famous proof of his principa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebra
Algebra () is one of the broad areas of mathematics. Roughly speaking, algebra is the study of mathematical symbols and the rules for manipulating these symbols in formulas; it is a unifying thread of almost all of mathematics. Elementary algebra deals with the manipulation of variables (commonly represented by Roman letters) as if they were numbers and is therefore essential in all applications of mathematics. Abstract algebra is the name given, mostly in education, to the study of algebraic structures such as groups, rings, and fields (the term is no more in common use outside educational context). Linear algebra, which deals with linear equations and linear mappings, is used for modern presentations of geometry, and has many practical applications (in weather forecasting, for example). There are many areas of mathematics that belong to algebra, some having "algebra" in their name, such as commutative algebra, and some not, such as Galois theory. The word ''algebra'' is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Varieties
Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the set of solutions of a system of polynomial equations over the real or complex numbers. Modern definitions generalize this concept in several different ways, while attempting to preserve the geometric intuition behind the original definition. Conventions regarding the definition of an algebraic variety differ slightly. For example, some definitions require an algebraic variety to be irreducible, which means that it is not the union of two smaller sets that are closed in the Zariski topology. Under this definition, non-irreducible algebraic varieties are called algebraic sets. Other conventions do not require irreducibility. The fundamental theorem of algebra establishes a link between algebra and geometry by showing that a monic polynomial (an algebraic object) in one variable with complex number coefficients is determined ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Radical Ideal
In ring theory, a branch of mathematics, the radical of an ideal I of a commutative ring is another ideal defined by the property that an element x is in the radical if and only if some power of x is in I. Taking the radical of an ideal is called ''radicalization''. A radical ideal (or semiprime ideal) is an ideal that is equal to its radical. The radical of a primary ideal is a prime ideal. This concept is generalized to non-commutative rings in the Semiprime ring article. Definition The radical of an ideal I in a commutative ring R, denoted by \operatorname(I) or \sqrt, is defined as :\sqrt = \left\, (note that I \subset \sqrt). Intuitively, \sqrt is obtained by taking all roots of elements of I within the ring R. Equivalently, \sqrt is the preimage of the ideal of nilpotent elements (the nilradical) of the quotient ring R/I (via the natural map \pi\colon R\to R/I). The latter proves that \sqrt is an ideal.Here is a direct proof that \sqrt is an ideal. Start with a,b\in\sqr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Geometry
Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is called a ''geometer''. Until the 19th century, geometry was almost exclusively devoted to Euclidean geometry, which includes the notions of point, line, plane, distance, angle, surface, and curve, as fundamental concepts. During the 19th century several discoveries enlarged dramatically the scope of geometry. One of the oldest such discoveries is Carl Friedrich Gauss' ("remarkable theorem") that asserts roughly that the Gaussian curvature of a surface is independent from any specific embedding in a Euclidean space. This implies that surfaces can be studied ''intrinsically'', that is, as stand-alone spaces, and has been expanded into the theory of manifolds and Riemannian geometry. Later in the 19th century, it appeared that geometries ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Generator (mathematics)
In mathematics and physics, the term generator or generating set may refer to any of a number of related concepts. The underlying concept in each case is that of a smaller set of objects, together with a set of operations that can be applied to it, that result in the creation of a larger collection of objects, called the generated set. The larger set is then said to be generated by the smaller set. It is commonly the case that the generating set has a simpler set of properties than the generated set, thus making it easier to discuss and examine. It is usually the case that properties of the generating set are in some way preserved by the act of generation; likewise, the properties of the generated set are often reflected in the generating set. List of generators A list of examples of generating sets follow. * Generating set or spanning set of a vector space: a set that spans the vector space * Generating set of a group: A subset of a group that is not contained in any subgro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cofinality
In mathematics, especially in order theory, the cofinality cf(''A'') of a partially ordered set ''A'' is the least of the cardinalities of the cofinal subsets of ''A''. This definition of cofinality relies on the axiom of choice, as it uses the fact that every non-empty set of cardinal numbers has a least member. The cofinality of a partially ordered set ''A'' can alternatively be defined as the least ordinal ''x'' such that there is a function from ''x'' to ''A'' with cofinal image. This second definition makes sense without the axiom of choice. If the axiom of choice is assumed, as will be the case in the rest of this article, then the two definitions are equivalent. Cofinality can be similarly defined for a directed set and is used to generalize the notion of a subsequence in a net. Examples * The cofinality of a partially ordered set with greatest element is 1 as the set consisting only of the greatest element is cofinal (and must be contained in every other cofinal subse ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cofinal (mathematics)
In mathematics, a subset B \subseteq A of a preordered set (A, \leq) is said to be cofinal or frequent in A if for every a \in A, it is possible to find an element b in B that is "larger than a" (explicitly, "larger than a" means a \leq b). Cofinal subsets are very important in the theory of directed sets and nets, where “ cofinal subnet” is the appropriate generalization of "subsequence". They are also important in order theory, including the theory of cardinal numbers, where the minimum possible cardinality of a cofinal subset of A is referred to as the cofinality of A. Definitions Let \,\leq\, be a homogeneous binary relation on a set A. A subset B \subseteq A is said to be or with respect to \,\leq\, if it satisfies the following condition: :For every a \in A, there exists some b \in B that a \leq b. A subset that is not frequent is called . This definition is most commonly applied when (A, \leq) is a directed set, which is a preordered set with additiona ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Curve
In mathematics, a curve (also called a curved line in older texts) is an object similar to a line (geometry), line, but that does not have to be Linearity, straight. Intuitively, a curve may be thought of as the trace left by a moving point (geometry), point. This is the definition that appeared more than 2000 years ago in Euclid's Elements, Euclid's ''Elements'': "The [curved] line is […] the first species of quantity, which has only one dimension, namely length, without any width nor depth, and is nothing else than the flow or run of the point which […] will leave from its imaginary moving some vestige in length, exempt of any width." This definition of a curve has been formalized in modern mathematics as: ''A curve is the image (mathematics), image of an interval (mathematics), interval to a topological space by a continuous function''. In some contexts, the function that defines the curve is called a ''parametrization'', and the curve is a parametric curve. In this artic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Local Cohomology
In algebraic geometry, local cohomology is an algebraic analogue of relative cohomology. Alexander Grothendieck introduced it in seminars in Harvard in 1961 written up by , and in 1961-2 at IHES written up as SGA2 - , republished as . Given a function (more generally, a section of a quasicoherent sheaf) defined on an open subset of an algebraic variety (or scheme), local cohomology measures the obstruction to extending that function to a larger domain. The rational function 1/x, for example, is defined only on the complement of 0 on the affine line \mathbb^1_K over a field K, and cannot be extended to a function on the entire space. The local cohomology module H^1_(K (where K /math> is the coordinate ring of \mathbb^1_K) detects this in the nonvanishing of a cohomology class /x/math>. In a similar manner, 1/xy is defined away from the x and y axes in the affine plane, but cannot be extended to either the complement of the x-axis or the complement of the y-axis alone (nor can it ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Completion (algebra)
In abstract algebra, a completion is any of several related functors on rings and modules that result in complete topological rings and modules. Completion is similar to localization, and together they are among the most basic tools in analysing commutative rings. Complete commutative rings have a simpler structure than general ones, and Hensel's lemma applies to them. In algebraic geometry, a completion of a ring of functions ''R'' on a space ''X'' concentrates on a formal neighborhood of a point of ''X'': heuristically, this is a neighborhood so small that ''all'' Taylor series centered at the point are convergent. An algebraic completion is constructed in a manner analogous to completion of a metric space with Cauchy sequences, and agrees with it in the case when ''R'' has a metric given by a non-Archimedean absolute value. General construction Suppose that ''E'' is an abelian group with a descending filtration : E = F^0 E \supset F^1 E \supset F^2 E \supset \cdots \, of s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Comparison Of Topologies
In topology and related areas of mathematics, the set of all possible topologies on a given set forms a partially ordered set. This order relation can be used for comparison of the topologies. Definition A topology on a set may be defined as the collection of subsets which are considered to be "open". An alternative definition is that it is the collection of subsets which are considered "closed". These two ways of defining the topology are essentially equivalent because the complement of an open set is closed and vice versa. In the following, it doesn't matter which definition is used. Let ''τ''1 and ''τ''2 be two topologies on a set ''X'' such that ''τ''1 is contained in ''τ''2: :\tau_1 \subseteq \tau_2. That is, every element of ''τ''1 is also an element of ''τ''2. Then the topology ''τ''1 is said to be a coarser (weaker or smaller) topology than ''τ''2, and ''τ''2 is said to be a finer (stronger or larger) topology than ''τ''1. There are some authors, especially ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Prime Number
A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, or , involve 5 itself. However, 4 is composite because it is a product (2 × 2) in which both numbers are smaller than 4. Primes are central in number theory because of the fundamental theorem of arithmetic: every natural number greater than 1 is either a prime itself or can be factorized as a product of primes that is unique up to their order. The property of being prime is called primality. A simple but slow method of checking the primality of a given number n, called trial division, tests whether n is a multiple of any integer between 2 and \sqrt. Faster algorithms include the Miller–Rabin primality test, which is fast but has a small chance of error, and the AKS primality test, which always pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]