Cofinality
In mathematics, especially in order theory, the cofinality cf(''A'') of a partially ordered set ''A'' is the least of the cardinalities of the cofinal subsets of ''A''. Formally, :\operatorname(A) = \inf \ This definition of cofinality relies on the axiom of choice, as it uses the fact that every non-empty set of cardinal numbers has a least member. The cofinality of a partially ordered set ''A'' can alternatively be defined as the least ordinal ''x'' such that there is a function from ''x'' to ''A'' with cofinal image. This second definition makes sense without the axiom of choice. If the axiom of choice is assumed, as will be the case in the rest of this article, then the two definitions are equivalent. Cofinality can be similarly defined for a directed set and is used to generalize the notion of a subsequence in a net. Examples * The cofinality of a partially ordered set with greatest element is 1 as the set consisting only of the greatest element is cofinal (and must be ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ordinal Number
In set theory, an ordinal number, or ordinal, is a generalization of ordinal numerals (first, second, th, etc.) aimed to extend enumeration to infinite sets. A finite set can be enumerated by successively labeling each element with the least natural number that has not been previously used. To extend this process to various infinite sets, ordinal numbers are defined more generally using linearly ordered greek letter variables that include the natural numbers and have the property that every set of ordinals has a least or "smallest" element (this is needed for giving a meaning to "the least unused element"). This more general definition allows us to define an ordinal number \omega (omega) to be the least element that is greater than every natural number, along with ordinal numbers , , etc., which are even greater than . A linear order such that every non-empty subset has a least element is called a well-order. The axiom of choice implies that every set can be well-orde ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Continuum Hypothesis
In mathematics, specifically set theory, the continuum hypothesis (abbreviated CH) is a hypothesis about the possible sizes of infinite sets. It states: Or equivalently: In Zermelo–Fraenkel set theory with the axiom of choice (ZFC), this is equivalent to the following equation in aleph numbers: 2^=\aleph_1, or even shorter with beth numbers: \beth_1 = \aleph_1. The continuum hypothesis was advanced by Georg Cantor in 1878, and establishing its truth or falsehood is the first of Hilbert's 23 problems presented in 1900. The answer to this problem is independent of ZFC, so that either the continuum hypothesis or its negation can be added as an axiom to ZFC set theory, with the resulting theory being consistent if and only if ZFC is consistent. This independence was proved in 1963 by Paul Cohen, complementing earlier work by Kurt Gödel in 1940. The name of the hypothesis comes from the term '' continuum'' for the real numbers. History Cantor believed the continuum ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Regular Cardinal
In set theory, a regular cardinal is a cardinal number that is equal to its own cofinality. More explicitly, this means that \kappa is a regular cardinal if and only if every unbounded subset C \subseteq \kappa has cardinality \kappa. Infinite well-ordered cardinals that are not regular are called singular cardinals. Finite cardinal numbers are typically not called regular or singular. In the presence of the axiom of choice, any cardinal number can be well-ordered, and so the following are equivalent: # \kappa is a regular cardinal. # If \kappa = \textstyle\sum_ \lambda_i and \lambda_i < \kappa for all , then . # If , and if and for all , then . That is, every union of fewer than sets smaller than is smaller than . # The [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cardinality Of The Continuum
In set theory, the cardinality of the continuum is the cardinality or "size" of the set of real numbers \mathbb R, sometimes called the continuum. It is an infinite cardinal number and is denoted by \bold\mathfrak c (lowercase Fraktur "c") or \bold, \bold\mathbb R\bold, . The real numbers \mathbb R are more numerous than the natural numbers \mathbb N. Moreover, \mathbb R has the same number of elements as the power set of \mathbb N. Symbolically, if the cardinality of \mathbb N is denoted as \aleph_0, the cardinality of the continuum is This was proven by Georg Cantor in his uncountability proof of 1874, part of his groundbreaking study of different infinities. The inequality was later stated more simply in his diagonal argument in 1891. Cantor defined cardinality in terms of bijective functions: two sets have the same cardinality if, and only if, there exists a bijective function between them. Between any two real numbers ''a'' < ''b'', no matter how close they ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cardinal Number
In mathematics, a cardinal number, or cardinal for short, is what is commonly called the number of elements of a set. In the case of a finite set, its cardinal number, or cardinality is therefore a natural number. For dealing with the case of infinite sets, the infinite cardinal numbers have been introduced, which are often denoted with the Hebrew letter \aleph (aleph) marked with subscript indicating their rank among the infinite cardinals. Cardinality is defined in terms of bijective functions. Two sets have the same cardinality if, and only if, there is a one-to-one correspondence (bijection) between the elements of the two sets. In the case of finite sets, this agrees with the intuitive notion of number of elements. In the case of infinite sets, the behavior is more complex. A fundamental theorem due to Georg Cantor shows that it is possible for two infinite sets to have different cardinalities, and in particular the cardinality of the set of real numbers is gre ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bounded (set Theory)
In mathematics, particularly in mathematical logic and set theory, a club set is a subset of a limit ordinal that is closed under the order topology, and is unbounded (see below) relative to the limit ordinal. The name ''club'' is a contraction of "closed and unbounded". Formal definition Formally, if \kappa is a limit ordinal, then a set C\subseteq\kappa is ''closed'' in \kappa if and only if for every \alpha < \kappa, if then Thus, if the limit of some sequence from is less than then the limit is also in If is a limit ordinal and then is unbounded in if for any there is some such that |
|
Limit Ordinal
In set theory, a limit ordinal is an ordinal number that is neither zero nor a successor ordinal. Alternatively, an ordinal λ is a limit ordinal if there is an ordinal less than λ, and whenever β is an ordinal less than λ, then there exists an ordinal γ such that β 0, are limits of limits, etc. Properties The classes of successor ordinals and limit ordinals (of various cofinalities) as well as zero exhaust the entire class of ordinals, so these cases are often used in proofs by transfinite induction or definitions by transfinite recursion. Limit ordinals represent a sort of "turning point" in such procedures, in which one must use limiting operations such as taking the union over all preceding ordinals. In principle, one could do anything at limit ordinals, but taking the union is continuous in the order topology and this is usually desirable. If we use the von Neumann cardinal assignment, every infinite cardinal number In mathematics, a cardinal number, or ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cofinal Subset
In mathematics, a subset B \subseteq A of a preordered set (A, \leq) is said to be cofinal or frequent in A if for every a \in A, it is possible to find an element b in B that dominates a (formally, a\leq b). Cofinal subsets are very important in the theory of directed sets and nets, where “ cofinal subnet” is the appropriate generalization of "subsequence". They are also important in order theory, including the theory of cardinal numbers, where the minimum possible cardinality of a cofinal subset of A is referred to as the cofinality of A. Definitions Let \,\leq\, be a homogeneous binary relation on a set A. A subset B \subseteq A is said to be or with respect to \,\leq\, if it satisfies the following condition: :For every a \in A, there exists some b \in B that a \leq b. A subset that is not frequent is called . This definition is most commonly applied when (A, \leq) is a directed set, which is a preordered set with additional properties. ;Final functions A ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cardinality
The thumb is the first digit of the hand, next to the index finger. When a person is standing in the medical anatomical position (where the palm is facing to the front), the thumb is the outermost digit. The Medical Latin English noun for thumb is ''pollex'' (compare ''hallux'' for big toe), and the corresponding adjective for thumb is ''pollical''. Definition Thumb and fingers The English word ''finger'' has two senses, even in the context of appendages of a single typical human hand: 1) Any of the five terminal members of the hand. 2) Any of the four terminal members of the hand, other than the thumb. Linguistically, it appears that the original sense was the first of these two: (also rendered as ) was, in the inferred Proto-Indo-European language, a suffixed form of (or ), which has given rise to many Indo-European-family words (tens of them defined in English dictionaries) that involve, or stem from, concepts of fiveness. The thumb shares the following with each of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
König's Theorem (set Theory)
There are several theorems associated with the name König or Kőnig: * König's theorem (set theory), named after the Hungarian mathematician Gyula Kőnig. * König's theorem (complex analysis), named after the Hungarian mathematician Gyula Kőnig. * Kőnig's theorem (graph theory), named after his son Dénes Kőnig. * König's theorem (kinetics), named after the German mathematician Samuel König. See also * Kőnig's lemma (also known as Kőnig's infinity lemma), named after Dénes Kőnig {{mathdab ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Disjoint Union
In mathematics, the disjoint union (or discriminated union) A \sqcup B of the sets and is the set formed from the elements of and labelled (indexed) with the name of the set from which they come. So, an element belonging to both and appears twice in the disjoint union, with two different labels. A disjoint union of an indexed family of sets (A_i : i\in I) is a set A, often denoted by \bigsqcup_ A_i, with an injective function, injection of each A_i into A, such that the image (mathematics), images of these injections form a Partition (set theory), partition of A (that is, each element of A belongs to exactly one of these images). A disjoint union of a family of pairwise disjoint sets is their Union (set theory), union. In category theory, the disjoint union is the coproduct of the category of sets, and thus defined up to a bijection. In this context, the notation \coprod_ A_i is often used. The disjoint union of two sets A and B is written with infix notation as A \sq ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |