Swendsen–Wang Algorithm
   HOME
*





Swendsen–Wang Algorithm
The Swendsen–Wang algorithm is the first non-local or cluster algorithm for Monte Carlo simulation for large systems near criticality. It has been introduced by Robert Swendsen and Jian-Sheng Wang in 1987 at Carnegie Mellon. The original algorithm was designed for the Ising and Potts models, and it was later generalized to other systems as well, such as the XY model by Wolff algorithm and particles of fluids. The key ingredient was the random cluster model, a representation of the Ising or Potts model through percolation models of connecting bonds, due to Fortuin and Kasteleyn. It has been generalized by Barbu and Zhu to arbitrary sampling probabilities by viewing it as a Metropolis–Hastings algorithm and computing the acceptance probability of the proposed Monte Carlo move. Motivation The problem of the critical slowing-down affecting local processes is of fundamental importance in the study of second-order phase transitions (like ferromagnetic transition in the Ising ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algorithm
In mathematics and computer science, an algorithm () is a finite sequence of rigorous instructions, typically used to solve a class of specific problems or to perform a computation. Algorithms are used as specifications for performing calculations and data processing. More advanced algorithms can perform automated deductions (referred to as automated reasoning) and use mathematical and logical tests to divert the code execution through various routes (referred to as automated decision-making). Using human characteristics as descriptors of machines in metaphorical ways was already practiced by Alan Turing with terms such as "memory", "search" and "stimulus". In contrast, a heuristic is an approach to problem solving that may not be fully specified or may not guarantee correct or optimal results, especially in problem domains where there is no well-defined correct or optimal result. As an effective method, an algorithm can be expressed within a finite amount of space ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ergodicity
In mathematics, ergodicity expresses the idea that a point of a moving system, either a dynamical system or a stochastic process, will eventually visit all parts of the space that the system moves in, in a uniform and random sense. This implies that the average behavior of the system can be deduced from the trajectory of a "typical" point. Equivalently, a sufficiently large collection of random samples from a process can represent the average statistical properties of the entire process. Ergodicity is a property of the system; it is a statement that the system cannot be reduced or factored into smaller components. Ergodic theory is the study of systems possessing ergodicity. Ergodic systems occur in a broad range of systems in physics and in geometry. This can be roughly understood to be due to a common phenomenon: the motion of particles, that is, geodesics on a hyperbolic manifold are divergent; when that manifold is compact, that is, of finite size, those orbits return to the s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Statistical Mechanics
In physics, statistical mechanics is a mathematical framework that applies statistical methods and probability theory to large assemblies of microscopic entities. It does not assume or postulate any natural laws, but explains the macroscopic behavior of nature from the behavior of such ensembles. Statistical mechanics arose out of the development of classical thermodynamics, a field for which it was successful in explaining macroscopic physical properties—such as temperature, pressure, and heat capacity—in terms of microscopic parameters that fluctuate about average values and are characterized by probability distributions. This established the fields of statistical thermodynamics and statistical physics. The founding of the field of statistical mechanics is generally credited to three physicists: * Ludwig Boltzmann, who developed the fundamental interpretation of entropy in terms of a collection of microstates *James Clerk Maxwell, who developed models of probability di ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Monte Carlo Methods
Monte Carlo methods, or Monte Carlo experiments, are a broad class of computational algorithms that rely on repeated random sampling to obtain numerical results. The underlying concept is to use randomness to solve problems that might be deterministic in principle. They are often used in physical and mathematical problems and are most useful when it is difficult or impossible to use other approaches. Monte Carlo methods are mainly used in three problem classes: optimization, numerical integration, and generating draws from a probability distribution. In physics-related problems, Monte Carlo methods are useful for simulating systems with many coupled degrees of freedom, such as fluids, disordered materials, strongly coupled solids, and cellular structures (see cellular Potts model, interacting particle systems, McKean–Vlasov processes, kinetic models of gases). Other examples include modeling phenomena with significant uncertainty in inputs such as the calculation of risk in b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Monte Carlo Method
Monte Carlo methods, or Monte Carlo experiments, are a broad class of computational algorithms that rely on repeated random sampling to obtain numerical results. The underlying concept is to use randomness to solve problems that might be deterministic in principle. They are often used in physical and mathematical problems and are most useful when it is difficult or impossible to use other approaches. Monte Carlo methods are mainly used in three problem classes: optimization, numerical integration, and generating draws from a probability distribution. In physics-related problems, Monte Carlo methods are useful for simulating systems with many coupled degrees of freedom, such as fluids, disordered materials, strongly coupled solids, and cellular structures (see cellular Potts model, interacting particle systems, McKean–Vlasov processes, kinetic models of gases). Other examples include modeling phenomena with significant uncertainty in inputs such as the calculation of ris ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Spin Glass
In condensed matter physics, a spin glass is a magnetic state characterized by randomness, besides cooperative behavior in freezing of spins at a temperature called 'freezing temperature' ''Tf''. In ferromagnetic solids, component atoms' magnetic spins all align in the same direction. Spin glass when contrasted with a ferromagnet is defined as " disordered" magnetic state in which spins are aligned randomly or without a regular pattern and the couplings too are random. The term "glass" comes from an analogy between the ''magnetic'' disorder in a spin glass and the ''positional'' disorder of a conventional, chemical glass, e.g., a window glass. In window glass or any amorphous solid the atomic bond structure is highly irregular; in contrast, a crystal has a uniform pattern of atomic bonds. In ferromagnetic solids, magnetic spins all align in the same direction; this is analogous to a crystal's lattice-based structure. The individual atomic bonds in a spin glass are a mixt ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Replica Cluster Move
Replica cluster move in condensed matter physics refers to a family of non-local cluster algorithms used to simulate spin glasses. It is an extension of the Swendsen-Wang algorithm in that it generates non-trivial spin clusters informed by the interaction states on two (or more) replicas instead of just one. It is different from the replica exchange method (or parallel tempering), as it performs a non-local update on a fraction of the sites between the two replicas at the same temperature, while parallel tempering directly exchanges all the spins between two replicas at different temperature. However, the two are often used alongside to achieve state-of-the-art efficiency in simulating spin-glass models. The Chayes-Matcha-Redner representation The Chayes-Matcha-Redner (CMR) representation is a graphical representation of the Ising spin glass which extends the standard FK representation. It is based on the observation that the total Hamiltonian of two independent Ising replicas Î ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Domino Tiling
In geometry, a domino tiling of a region in the Euclidean plane is a tessellation of the region by dominoes, shapes formed by the union of two unit squares meeting edge-to-edge. Equivalently, it is a perfect matching in the grid graph formed by placing a vertex at the center of each square of the region and connecting two vertices when they correspond to adjacent squares. Height functions For some classes of tilings on a regular grid in two dimensions, it is possible to define a height function associating an integer to the vertices of the grid. For instance, draw a chessboard, fix a node A_0 with height 0, then for any node there is a path from A_0 to it. On this path define the height of each node A_ (i.e. corners of the squares) to be the height of the previous node A_n plus one if the square on the right of the path from A_n to A_ is black, and minus one otherwise. More details can be found in . Thurston's height condition describes a test for determining whether a simply- ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




KBD Algorithm
The KBD algorithm is a cluster update algorithm designed for the fully frustrated Ising model in two dimensions, or more generally any two dimensional spin glass with frustrated plaquettes arranged in a checkered pattern. It is discovered in 1990 by Daniel Kandel, Radel Ben-Av, and Eytan Domany, and generalized by P. D. Coddington and L. Han in 1994. It is the inspiration for cluster algorithms used in quantum monte carlo simulations. Motivation The SW algorithm is the first non-local algorithm designed for efficient simulation of ferromagnetic spin models. However, it is soon realized that the efficiency of the algorithm cannot be extended to frustrated systems, due to an overly large correlation length of the generated clusters with respect to the underlying spin system. The KBD algorithm is an attempt to extend the bond-formation rule to the plaquettes of the lattice, such that the generated clusters are informed by the frustration profile, resulting in them being smal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Correlation Function (statistical Mechanics)
In statistical mechanics, the correlation function is a measure of the order in a system, as characterized by a mathematical correlation function. Correlation functions describe how microscopic variables, such as spin and density, at different positions are related. More specifically, correlation functions quantify how microscopic variables co-vary with one another on average across space and time. A classic example of such spatial correlations is in ferro- and antiferromagnetic materials, where the spins prefer to align parallel and antiparallel with their nearest neighbors, respectively. The spatial correlation between spins in such materials is shown in the figure to the right. Definitions The most common definition of a correlation function is the canonical ensemble (thermal) average of the scalar product of two random variables, s_1 and s_2, at positions R and R+r and times t and t+\tau: C (r,\tau) = \langle \mathbf(R,t) \cdot \mathbf(R+r,t+\tau)\rangle\ - \langle \mathbf( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Percolation Critical Exponents
In the context of the physical and mathematical theory of percolation, a percolation transition is characterized by a set of ''universal'' critical exponents, which describe the fractal properties of the percolating medium at large scales and sufficiently close to the transition. The exponents are universal in the sense that they only depend on the type of percolation model and on the space dimension. They are expected to not depend on microscopic details such as the lattice structure, or whether site or bond percolation is considered. This article deals with the critical exponents of random percolation. Percolating systems have a parameter p\,\! which controls the occupancy of sites or bonds in the system. At a critical value p_c\,\!, the mean cluster size goes to infinity and the percolation transition takes place. As one approaches p_c\,\!, various quantities either diverge or go to a constant value by a power law in , p - p_c, \,\!, and the exponent of that power law is the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Geometrical Frustration
In condensed matter physics, the term geometrical frustration (or in short: frustration) refers to a phenomenon where atoms tend to stick to non-trivial positions or where, on a regular crystal lattice, conflicting inter-atomic forces (each one favoring rather simple, but different structures) lead to quite complex structures. As a consequence of the frustration in the geometry or in the forces, a plenitude of distinct ground states may result at zero temperature, and usual thermal ordering may be suppressed at higher temperatures. Much studied examples are amorphous materials, glasses, or dilute magnets. The term ''frustration'', in the context of magnetic systems, has been introduced by Gerard Toulouse in 1977. Frustrated magnetic systems had been studied even before. Early work includes a study of the Ising model on a triangular lattice with nearest-neighbor spins coupled antiferromagnetically, by G. H. Wannier, published in 1950. Related features occur in magnets with ''competi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]