Suzuki–Trotter Decomposition
   HOME





Suzuki–Trotter Decomposition
In mathematics, the Lie product formula, named for Sophus Lie (1875), but also widely called the Trotter product formula, named after Hale Trotter, states that for arbitrary ''m'' × ''m'' real or complex matrices ''A'' and ''B'', e^ = \lim_ (e^e^)^n, where ''e''''A'' denotes the matrix exponential of ''A''. The Lie–Trotter product formula and the Trotter–Kato theorem extend this to certain unbounded linear operators ''A'' and ''B''. This formula is an analogue of the classical exponential law e^ = e^x e^y which holds for all real or complex numbers ''x'' and ''y''. If ''x'' and ''y'' are replaced with matrices ''A'' and ''B'', and the exponential replaced with a matrix exponential, it is usually necessary for ''A'' and ''B'' to commute for the law to still hold. However, the Lie product formula holds for all matrices ''A'' and ''B'', even ones which do not commute. The Lie product formula is conceptually related to the Baker–Campbell–Hausdorff formula, in that ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Masuo Suzuki
Masuo (written: 益男, 斗雄 or 満寿夫) is a masculine Japanese given name. Notable people with the name include: * (born 1958), Japanese actor and voice actor * (born 1947), Japanese sumo wrestler * (1934–1997), Japanese artist, writer and film director Masuo (written: 増尾) is also a Japanese surname. Notable people with the surname include: * (born 1986), Japanese actor See also * Masuo Station (other), multiple train stations in Japan {{given name, type=both Japanese-language surnames Japanese masculine given names Masculine given names ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Proceedings Of The American Mathematical Society
''Proceedings of the American Mathematical Society'' is a monthly peer-reviewed scientific journal of mathematics published by the American Mathematical Society. The journal is devoted to shorter research articles. As a requirement, all articles must be at most 15 printed pages. According to the ''Journal Citation Reports'', the journal has a 2018 impact factor of 0.813. Scope ''Proceedings of the American Mathematical Society'' publishes articles from all areas of pure and applied mathematics, including topology, geometry, analysis, algebra, number theory, combinatorics, logic, probability and statistics. Abstracting and indexing This journal is indexed in the following databases:Indexing and archiving notes
2011. American Mathematical Society. *
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Academic Press
Academic Press (AP) is an academic book publisher founded in 1941. It launched a British division in the 1950s. Academic Press was acquired by Harcourt, Brace & World in 1969. Reed Elsevier said in 2000 it would buy Harcourt, a deal completed the next year, after a regulatory review. Thus, Academic Press is now an imprint of Elsevier. Academic Press publishes reference books, serials and online products in the subject areas of: * Communications engineering * Economics * Environmental science * Finance * Food science and nutrition * Geophysics * Life sciences * Mathematics and statistics * Neuroscience * Physical sciences * Psychology Psychology is the scientific study of mind and behavior. Its subject matter includes the behavior of humans and nonhumans, both consciousness, conscious and Unconscious mind, unconscious phenomena, and mental processes such as thoughts, feel ... Well-known products include the '' Methods in Enzymology'' series and encyclopedias such ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Springer-Verlag
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second-largest academic publisher with 65 staff in 1872.Chronology
". Springer Science+Business Media.
In 1964, Springer expanded its business internationally, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Time-evolving Block Decimation
The time-evolving block decimation (TEBD) algorithm is a numerical scheme used to simulate one-dimensional quantum many-body systems, characterized by at most nearest-neighbour interactions. It is dubbed Time-evolving Block Decimation because it dynamically identifies the relevant low-dimensional Hilbert subspaces of an exponentially larger original Hilbert space. The algorithm, based on the Matrix Product States formalism, is highly efficient when the amount of entanglement in the system is limited, a requirement fulfilled by a large class of quantum many-body systems in one dimension. Introduction Time-evolving block decimation (TEBD) is a numerical algorithm that can efficiently simulate the time evolution of one dimensional quantum systems having limited entanglement entropy. Naively, to time evolve a system characterized by a Hamiltonian \hat one would directly exponentiate the Hamiltonian to get the time evolution operator \hat(t)=e^ and apply this to an initial state: \psi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


C0-semigroup
In mathematical analysis, a ''C''0-semigroup, also known as a strongly continuous one-parameter semigroup, is a generalization of the exponential function. Just as exponential functions provide solutions of scalar linear constant coefficient ordinary differential equations, strongly continuous semigroups provide solutions of linear constant coefficient ordinary differential equations in Banach spaces. Such differential equations in Banach spaces arise from e.g. delay differential equations and partial differential equations. Formally, a strongly continuous semigroup is a representation of the semigroup (R+, +) on some Banach space ''X'' that is continuous in the strong operator topology. Formal definition A strongly continuous semigroup on a Banach space X is a map T : \mathbb_+ \to L(X) (where L(X) is the space of bounded operators on X) such that # T(0) = I ,   (the identity operator on X) # \forall t,s \ge 0 : \ T(t + s) = T(t) T(s) # \forall x_0 \in X: ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Feynman–Kac Formula
The Feynman–Kac formula, named after Richard Feynman and Mark Kac, establishes a link between parabolic partial differential equations and stochastic processes. In 1947, when Kac and Feynman were both faculty members at Cornell University, Kac attended a presentation of Feynman's and remarked that the two of them were working on the same thing from different directions. The Feynman–Kac formula resulted, which proves rigorously the real-valued case of Feynman's path integrals. The complex case, which occurs when a particle's spin is included, is still an open question. It offers a method of solving certain partial differential equations by simulating random paths of a stochastic process. Conversely, an important class of expectations of random processes can be computed by deterministic methods. Theorem Consider the partial differential equation \fracu(x,t) + \mu(x,t) \fracu(x,t) + \tfrac \sigma^2(x,t) \fracu(x,t) -V(x,t) u(x,t) + f(x,t) = 0, defined for all x \in \mathbb ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Symplectic Integrator
In mathematics, a symplectic integrator (SI) is a Numerical ordinary differential equations, numerical integration scheme for Hamiltonian systems. Symplectic integrators form the subclass of geometric integrators which, by definition, are canonical transformations. They are widely used in nonlinear dynamics, molecular dynamics, discrete element methods, particle accelerator, accelerator physics, plasma physics, quantum physics, and celestial mechanics. Introduction Symplectic integrators are designed for the numerical solution of Hamilton's equations, which read \dot p = -\frac \quad\mbox\quad \dot q = \frac, where q denotes the position coordinates, p the momentum coordinates, and H is the Hamiltonian. The set of position and momentum coordinates (q,p) are called canonical coordinates. (See Hamiltonian mechanics for more background.) The time evolution of Hamilton's equations is a symplectomorphism, meaning that it conserves the symplectic 2-form dp \wedge dq. A numerical sche ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Propagator
In quantum mechanics and quantum field theory, the propagator is a function that specifies the probability amplitude for a particle to travel from one place to another in a given period of time, or to travel with a certain energy and momentum. In Feynman diagrams, which serve to calculate the rate of collisions in quantum field theory, virtual particles contribute their propagator to the rate of the scattering event described by the respective diagram. Propagators may also be viewed as the inverse of the wave operator appropriate to the particle, and are, therefore, often called ''(causal) Green's functions'' (called "''causal''" to distinguish it from the elliptic Laplacian Green's function). Non-relativistic propagators In non-relativistic quantum mechanics, the propagator gives the probability amplitude for a particle to travel from one spatial point (x') at one time (t') to another spatial point (x) at a later time (t). The Green's function G for the Schrödinger equat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sophus Lie
Marius Sophus Lie ( ; ; 17 December 1842 – 18 February 1899) was a Norwegian mathematician. He largely created the theory of continuous symmetry and applied it to the study of geometry and differential equations. He also made substantial contributions to the development of algebra. Life and career Marius Sophus Lie was born on 17 December 1842 in the small town of Nordfjordeid. He was the youngest of six children born to Lutheran pastor Johann Herman Lie and his wife, who came from a well-known Trondheim family. He had his primary education in the south-eastern coast of Moss, before attending high school in Oslo (known then as Christiania). After graduating from high school, his ambition towards a military career was dashed when the army rejected him due to poor eyesight. He then enrolled at the University of Christiania. Sophus Lie's first mathematical work, ''Repräsentation der Imaginären der Plangeometrie'', was published in 1869 by the Academy of Sciences in Chris ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]