SuhB
   HOME
*





SuhB
''suhB'', also known as ''mmgR'' (makes more granules regulator), is a non-coding RNA found multiple times in the ''Agrobacterium tumefaciens'' genome and related alpha-proteobacteria. Other non-coding RNAs uncovered in the same analysis include '' speF'', '' ybhL'', ''metA'', and ''serC''. Several studies in '' Sinorhizobium meliloti'' showed that the ''suhB'' element is indeed a non-coding RNA. It was first detected by Northern blot and called ''Sm8RNA'', then in an RNAseq study and referred to as ''SmelC689''. The mutant (lacking the small RNA) phenotype's cytoplasm contains a higher content of polyhydroxybutyrate (PBH) storage granules than the wild type strain. The sRNA is required to limit the PBH intracellular accumulation when the nitrogen-fixing '' Sinorhizobium meliloti'' is converting surplus carbon to nitrogen his needs to be modified, carbon cannot be converted to nitrogen/sup>. Further study confirmed that ''suhB'' fine-tunes the regulation of PBH storage. North ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


RcsR1 Small RNA
RcsR1 (rhizobial cold and salinity stress riboregulator 1) trans-acting sRNA, formerly known as SmelC587, is a stress-related riboregulator, conserved in ''Sinorhizobium'', '' Rhizobium'' and ''Agrobacterium''. It contains highly conserved stem-loops involved in the interaction with several target mRNAs (PhoR, MotE, anti-σE1, GntR, FgA, TrpC). In '' Sinorhizobium meliloti'' RcsR1 less conserved central region is responsible for the species-specific interaction with the 5’UTR of autoinducer synthase encoding mRNA ''sinI''. The interaction negatively influences ''sinI'' translation. See also * SuhB * EcpR1 sRNA EcpR1 (elongated cell phenotype RNA1) is a ''trans-''encoded small non-coding RNA in the plant-symbiotic '' Sinorhizobium meliloti'', previously named SmelC291, SmrC10, or Sra33. According to its overproduction phenotype it was renamed Elongated Ce ... References {{reflist Non-coding RNA ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


EcpR1 SRNA
EcpR1 (elongated cell phenotype RNA1) is a ''trans-''encoded small non-coding RNA in the plant-symbiotic '' Sinorhizobium meliloti'', previously named SmelC291, SmrC10, or Sra33. According to its overproduction phenotype it was renamed Elongated Cell Phenotype RNA1. Induced by stress, EcpR1 negatively regulates cell cycle master regulatory genes ''dnaA'' and ''gcrA'' at post-transcriptional level by base pairing between its strongly conserved GC-rich loop and the target mRNAs. It is suggested that EcpR1 connects stress adaptation and cell cycle progression. See also * SuhB ''suhB'', also known as ''mmgR'' (makes more granules regulator), is a non-coding RNA found multiple times in the ''Agrobacterium tumefaciens'' genome and related alpha-proteobacteria. Other non-coding RNAs uncovered in the same analysis include ... * RcsR1 small RNA Further reading {{Reflist Non-coding RNA ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Small RNA
Small RNA (sRNA) are polymeric RNA molecules that are less than 200 nucleotides in length, and are usually non-coding Non-coding DNA (ncDNA) sequences are components of an organism's DNA that do not encode protein sequences. Some non-coding DNA is transcribed into functional non-coding RNA molecules (e.g. transfer RNA, microRNA, piRNA, ribosomal RNA, and regula .... RNA silencing is often a function of these molecules, with the most common and well-studied example being RNA interference (RNAi), in which endogenously expressed microRNA (miRNA) or exogenously derived small interfering RNA (siRNA) induces the degradation of complementarity (molecular biology), complementary messenger RNA. Other classes of small RNA have been identified, including piwi-interacting RNA (piRNA) and its subspecies rasiRNA, repeat associated small interfering RNA (rasiRNA). Small RNA "is unable to induce RNAi alone, and to accomplish the task it must form the core of the RNA–protein complex termed the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Catabolite Repression
Carbon catabolite repression, or simply catabolite repression, is an important part of global control system of various bacteria and other microorganisms. Catabolite repression allows microorganisms to adapt quickly to a preferred (rapidly metabolizable) carbon and energy source first. This is usually achieved through inhibition of synthesis of enzymes involved in catabolism of carbon sources other than the preferred one. The catabolite repression was first shown to be initiated by glucose and therefore sometimes referred to as the glucose effect. However, the term "glucose effect" is actually a misnomer since other carbon sources are known to induce catabolite repression. ''Escherichia coli'' Catabolite repression was extensively studied in ''Escherichia coli''. ''E. coli'' grows faster on glucose than on any other carbon source. For example, if ''E. coli'' is placed on an agar plate containing only glucose and lactose, the bacteria will use glucose first and lactose second. Wh ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Beta-galactosidase
β-Galactosidase (EC 3.2.1.23, lactase, beta-gal or β-gal; systematic name β-D-galactoside galactohydrolase), is a glycoside hydrolase enzyme that catalyzes hydrolysis of terminal non-reducing β-D-galactose residues in β-D-galactosides. β-Galactosides include carbohydrates containing galactose where the glycosidic bond lies above the galactose molecule. Substrates of different β-galactosidases include ganglioside GM1, lactosylceramides, lactose, and various glycoproteins. Function β-Galactosidase is an exoglycosidase which hydrolyzes the β-glycosidic bond formed between a galactose and its organic moiety. It may also cleave fucosides and arabinosides but with much lower efficiency. It is an essential enzyme in the human body. Deficiencies in the protein can result in galactosialidosis or Morquio B syndrome. In '' E. coli'', the ''lacZ'' gene is the structural gene for β-galactosidase; which is present as part of the inducible system ''lac'' operon which is activ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tetralin
Tetralin (1,2,3,4-tetrahydronaphthalene) is a hydrocarbon having the chemical formula C10H12. It is a partially hydrogenated derivative of naphthalene. It is a colorless liquid that is used as a hydrogen-donor solvent. Production Tetralin is produced by the catalytic hydrogenation of naphthalene. Although nickel catalysts are traditionally employed, many variations have been evaluated. Over-hydrogenation converts tetralin into decahydronaphthalene (decalin). Rarely encountered is dihydronaphthalene (dialin). Laboratory methods In a classic named reaction called the Darzens tetralin synthesis, named for Auguste Georges Darzens (1926), derivatives can be prepared by intramolecular electrophilic aromatic substitution reaction of a 1-aryl-4-pentene using concentrated sulfuric acid, Uses Tetralin is used as a hydrogen-donor solvent, for example in coal liquifaction. It functions as a source of H2, which is transferred to the coal. The partially hydrogenated coal is more solu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Alphaproteobacteria
Alphaproteobacteria is a class of bacteria in the phylum Pseudomonadota (formerly Proteobacteria). The Magnetococcales and Mariprofundales are considered basal or sister to the Alphaproteobacteria. The Alphaproteobacteria are highly diverse and possess few commonalities, but nevertheless share a common ancestor. Like all ''Proteobacteria'', its members are gram-negative and some of its intracellular parasitic members lack peptidoglycan and are consequently gram variable. Characteristics The Alphaproteobacteria are a diverse taxon and comprises several phototrophic genera, several genera metabolising C1-compounds (''e.g.'', ''Methylobacterium'' spp.), symbionts of plants (''e.g.'', ''Rhizobium'' spp.), endosymbionts of arthropods (''Wolbachia'') and intracellular pathogens (''e.g. Rickettsia''). Moreover, the class is sister to the protomitochondrion, the bacterium that was engulfed by the eukaryotic ancestor and gave rise to the mitochondria, which are organelles in eukaryotic ce ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hfq Protein
The Hfq protein (also known as HF-I protein) encoded by the ''hfq'' gene was discovered in 1968 as an ''Escherichia coli'' host factor that was essential for replication of the bacteriophage Qβ. It is now clear that Hfq is an abundant bacterial RNA binding protein which has many important physiological roles that are usually mediated by interacting with Hfq binding sRNA. In ''E. coli'', Hfq mutants show multiple stress response related phenotypes. The Hfq protein is now known to regulate the translation of two major stress transcription factors ( σS (RpoS) and σE (RpoE) ) in Enterobacteria. It also regulates sRNA in ''Vibrio cholerae'', a specific example being MicX sRNA. In ''Salmonella typhimurium'', Hfq has been shown to be an essential virulence factor as its deletion attenuates the ability of ''S.typhimurium'' to invade epithelial cells, secrete virulence factors or survive in cultured macrophages. In ''Salmonella'', Hfq deletion mutants are also non motile and exhibit chro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Small RNA
Small RNA (sRNA) are polymeric RNA molecules that are less than 200 nucleotides in length, and are usually non-coding Non-coding DNA (ncDNA) sequences are components of an organism's DNA that do not encode protein sequences. Some non-coding DNA is transcribed into functional non-coding RNA molecules (e.g. transfer RNA, microRNA, piRNA, ribosomal RNA, and regula .... RNA silencing is often a function of these molecules, with the most common and well-studied example being RNA interference (RNAi), in which endogenously expressed microRNA (miRNA) or exogenously derived small interfering RNA (siRNA) induces the degradation of complementarity (molecular biology), complementary messenger RNA. Other classes of small RNA have been identified, including piwi-interacting RNA (piRNA) and its subspecies rasiRNA, repeat associated small interfering RNA (rasiRNA). Small RNA "is unable to induce RNAi alone, and to accomplish the task it must form the core of the RNA–protein complex termed the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Polyhydroxybutyrate
Polyhydroxybutyrate (PHB) is a polyhydroxyalkanoate (PHA), a polymer belonging to the polyesters class that are of interest as bio-derived and biodegradable plastics. The poly-3-hydroxybutyrate (P3HB) form of PHB is probably the most common type of polyhydroxyalkanoate, but other polymers of this class are produced by a variety of organisms: these include poly-4-hydroxybutyrate (P4HB), polyhydroxyvalerate (PHV), polyhydroxyhexanoate (PHH), polyhydroxyoctanoate (PHO) and their copolymers. Biosynthesis PHB is produced by microorganisms (such as '' Cupriavidus necator'', '' Methylobacterium rhodesianum'' or ''Bacillus megaterium'') apparently in response to conditions of physiological stress; mainly conditions in which nutrients are limited. The polymer is primarily a product of carbon assimilation (from glucose or starch) and is employed by microorganisms as a form of energy storage molecule to be metabolized when other common energy sources are not available. Microbial biosynthe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Secondary Structure
Protein secondary structure is the three dimensional conformational isomerism, form of ''local segments'' of proteins. The two most common Protein structure#Secondary structure, secondary structural elements are alpha helix, alpha helices and beta sheets, though beta turns and omega loops occur as well. Secondary structure elements typically spontaneously form as an intermediate before the protein protein folding, folds into its three dimensional protein tertiary structure, tertiary structure. Secondary structure is formally defined by the pattern of hydrogen bonds between the Amine, amino hydrogen and carboxyl oxygen atoms in the peptide backbone chain, backbone. Secondary structure may alternatively be defined based on the regular pattern of backbone Dihedral angle#Dihedral angles of proteins, dihedral angles in a particular region of the Ramachandran plot regardless of whether it has the correct hydrogen bonds. The concept of secondary structure was first introduced by Kaj Ulrik ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sequence Conservation
In evolutionary biology, conserved sequences are identical or similar sequences in nucleic acids ( DNA and RNA) or proteins across species ( orthologous sequences), or within a genome ( paralogous sequences), or between donor and receptor taxa ( xenologous sequences). Conservation indicates that a sequence has been maintained by natural selection. A highly conserved sequence is one that has remained relatively unchanged far back up the phylogenetic tree, and hence far back in geological time. Examples of highly conserved sequences include the RNA components of ribosomes present in all domains of life, the homeobox sequences widespread amongst Eukaryotes, and the tmRNA in Bacteria. The study of sequence conservation overlaps with the fields of genomics, proteomics, evolutionary biology, phylogenetics, bioinformatics and mathematics. History The discovery of the role of DNA in heredity, and observations by Frederick Sanger of variation between animal insulins in 1949, promp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]