Stabbing Set
   HOME



picture info

Stabbing Set
The set cover problem is a classical question in combinatorics, computer science, operations research, and complexity theory. Given a set of elements (henceforth referred to as the universe, specifying all possible elements under consideration) and a collection, referred to as , of a given subsets whose union equals the universe, the set cover problem is to identify a smallest sub-collection of whose union equals the universe. For example, consider the universe, and the collection of sets In this example, is equal to 4, as there are four subsets that comprise this collection. The union of is equal to . However, we can cover all elements with only two sets: , see picture, but not with only one set. Therefore, the solution to the set cover problem for this and has size 2. More formally, given a universe \mathcal and a family \mathcal of subsets of \mathcal, a set cover is a subfamily \mathcal\subseteq\mathcal of sets whose union is \mathcal. * In the set cover decis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Linear Programming Relaxation
In mathematics, the relaxation of a (mixed) integer linear program is the problem that arises by removing the integrality constraint of each variable. For example, in a 0–1 integer program, all constraints are of the form :x_i\in\. The relaxation of the original integer program instead uses a collection of linear constraints :0 \le x_i \le 1. The resulting relaxation is a linear program, hence the name. This relaxation technique transforms an NP-hard optimization problem (integer programming) into a related problem that is solvable in polynomial time (linear programming); the solution to the relaxed linear program can be used to gain information about the solution to the original integer program. Example Consider the set cover problem, the linear programming relaxation of which was first considered by Lovász in 1975. In this problem, one is given as input a family of sets ''F'' = ; the task is to find a subfamily, with as few sets as possible, having the same union as ''F ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quasi-polynomial Time
In computational complexity theory and the analysis of algorithms, an algorithm is said to take quasi-polynomial time if its time complexity is quasi-polynomially bounded. That is, there should exist a constant c such that the worst-case running time of the algorithm, on inputs of has an upper bound of the form 2^. The decision problems with quasi-polynomial time algorithms are natural candidates for being NP-intermediate, neither having polynomial time nor likely to be NP-hard. Complexity class The complexity class QP consists of all problems that have quasi-polynomial time algorithms. It can be defined in terms of DTIME as follows. :\mathsf = \bigcup_ \mathsf \left(2^\right) Examples An early example of a quasi-polynomial time algorithm was the Adleman–Pomerance–Rumely primality test. However, the problem of testing whether a number is a prime number has subsequently been shown to have a polynomial time algorithm, the AKS primality test. In some cases, quasi-polynomi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Integer Linear Program Formulation
An integer is the number zero ( 0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative integers. The set of all integers is often denoted by the boldface or blackboard bold The set of natural numbers \mathbb is a subset of \mathbb, which in turn is a subset of the set of all rational numbers \mathbb, itself a subset of the real numbers \mathbb. Like the set of natural numbers, the set of integers \mathbb is countably infinite. An integer may be regarded as a real number that can be written without a fractional component. For example, 21, 4, 0, and −2048 are integers, while 9.75, , 5/4, and are not. The integers form the smallest group and the smallest ring containing the natural numbers. In algebraic number theory, the integers are sometimes qualified as rational integers to distinguish them from the more general alge ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Set Cover Problem
The set cover problem is a classical question in combinatorics, computer science, operations research, and complexity theory. Given a set of elements (henceforth referred to as the universe, specifying all possible elements under consideration) and a collection, referred to as , of a given subsets whose union equals the universe, the set cover problem is to identify a smallest sub-collection of whose union equals the universe. For example, consider the universe, and the collection of sets In this example, is equal to 4, as there are four subsets that comprise this collection. The union of is equal to . However, we can cover all elements with only two sets: , see picture, but not with only one set. Therefore, the solution to the set cover problem for this and has size 2. More formally, given a universe \mathcal and a family \mathcal of subsets of \mathcal, a set cover is a subfamily \mathcal\subseteq\mathcal of sets whose union is \mathcal. * In the set cover deci ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Harmonic Number
In mathematics, the -th harmonic number is the sum of the reciprocals of the first natural numbers: H_n= 1+\frac+\frac+\cdots+\frac =\sum_^n \frac. Starting from , the sequence of harmonic numbers begins: 1, \frac, \frac, \frac, \frac, \dots Harmonic numbers are related to the harmonic mean in that the -th harmonic number is also times the reciprocal of the harmonic mean of the first positive integers. Harmonic numbers have been studied since antiquity and are important in various branches of number theory. They are sometimes loosely termed harmonic series, are closely related to the Riemann zeta function, and appear in the expressions of various special functions. The harmonic numbers roughly approximate the natural logarithm function and thus the associated harmonic series grows without limit, albeit slowly. In 1737, Leonhard Euler used the divergence of the harmonic series to provide a new proof of the infinity of prime numbers. His work was extended into the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Mathematics Of Operations Research
''Mathematics of Operations Research'' is a quarterly peer-reviewed scientific journal established in February 1976. It focuses on areas of mathematics relevant to the field of operations research such as continuous optimization, discrete optimization, game theory, machine learning, simulation methodology, and stochastic models. The journal is published by INFORMS (Institute for Operations Research and the Management Sciences). the journal has a 2017 impact factor of 1.078. History The journal was established in 1976. The founding editor-in-chief was Arthur F. Veinott Jr. (Stanford University). He served until 1980, when the position was taken over by Stephen M. Robinson, who held the position until 1986. Erhan Cinlar served from 1987 to 1992, and was followed by Jan Karel Lenstra (1993-1998). Next was Gérard Cornuéjols (1999-2003) and Nimrod Megiddo (2004-2009). Finally came Uri Rothblum (2009-2012), Jim Dai (2012-2018), and the current editor-in-chief Katya Scheinberg (20 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bucket Queue
A bucket queue is a data structure that implements the priority queue abstract data type: it maintains a dynamic collection of elements with numerical priorities and allows quick access to the element with minimum (or maximum) priority. In the bucket queue, the priorities must be integers, and it is particularly suited to applications in which the priorities have a small range. A bucket queue has the form of an array of buckets: an array data structure, indexed by the priorities, whose cells contain collections of items with the same priority as each other. With this data structure, insertion of elements and changes of their priority take constant time. Searching for and removing the minimum-priority element takes time proportional to the number of buckets or, by maintaining a pointer to the most recently found bucket, in time proportional to the difference in priorities between successive operations. The bucket queue is the priority-queue analogue of pigeonhole sort (also call ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Greedy Algorithm
A greedy algorithm is any algorithm that follows the problem-solving heuristic of making the locally optimal choice at each stage. In many problems, a greedy strategy does not produce an optimal solution, but a greedy heuristic can yield locally optimal solutions that approximate a globally optimal solution in a reasonable amount of time. For example, a greedy strategy for the travelling salesman problem (which is of high computational complexity) is the following heuristic: "At each step of the journey, visit the nearest unvisited city." This heuristic does not intend to find the best solution, but it terminates in a reasonable number of steps; finding an optimal solution to such a complex problem typically requires unreasonably many steps. In mathematical optimization, greedy algorithms optimally solve combinatorial problems having the properties of matroids and give constant-factor approximations to optimization problems with the submodular structure. Specifics Greedy algori ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




If And Only If
In logic and related fields such as mathematics and philosophy, "if and only if" (often shortened as "iff") is paraphrased by the biconditional, a logical connective between statements. The biconditional is true in two cases, where either both statements are true or both are false. The connective is biconditional (a statement of material equivalence), and can be likened to the standard material conditional ("only if", equal to "if ... then") combined with its reverse ("if"); hence the name. The result is that the truth of either one of the connected statements requires the truth of the other (i.e. either both statements are true, or both are false), though it is controversial whether the connective thus defined is properly rendered by the English "if and only if"—with its pre-existing meaning. For example, ''P if and only if Q'' means that ''P'' is true whenever ''Q'' is true, and the only case in which ''P'' is true is if ''Q'' is also true, whereas in the case of ''P if Q ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]