HOME





Small Set (combinatorics)
In combinatorial mathematics, a large set of positive integers :S = \ is one such that the infinite sum of the reciprocals :\frac+\frac+\frac+\frac+\cdots diverges. A small set is any subset of the positive integers that is not large; that is, one whose sum of reciprocals converges. Large sets appear in the Müntz–Szász theorem and in the Erdős conjecture on arithmetic progressions. Examples * Every finite subset of the positive integers is small. * The set \ of all positive integers is a large set; this statement is equivalent to the divergence of the harmonic series. More generally, any arithmetic progression (i.e., a set of all integers of the form ''an'' + ''b'' with ''a'' ≥ 1, ''b'' ≥ 1 and ''n'' = 0, 1, 2, 3, ...) is a large set. * The set of square numbers is small (see Basel problem). So is the set of cube numbers, the set of 4th powers, and so on. More generally, the set of positive integer va ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Combinatorics
Combinatorics is an area of mathematics primarily concerned with counting, both as a means and as an end to obtaining results, and certain properties of finite structures. It is closely related to many other areas of mathematics and has many applications ranging from logic to statistical physics and from evolutionary biology to computer science. Combinatorics is well known for the breadth of the problems it tackles. Combinatorial problems arise in many areas of pure mathematics, notably in algebra, probability theory, topology, and geometry, as well as in its many application areas. Many combinatorial questions have historically been considered in isolation, giving an ''ad hoc'' solution to a problem arising in some mathematical context. In the later twentieth century, however, powerful and general theoretical methods were developed, making combinatorics into an independent branch of mathematics in its own right. One of the oldest and most accessible parts of combinatorics ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Brun's Constant
In number theory, Brun's theorem states that the sum of the reciprocals of the twin primes (pairs of prime numbers which differ by 2) converges to a finite value known as Brun's constant, usually denoted by ''B''2 . Brun's theorem was proved by Viggo Brun in 1919, and it has historical importance in the introduction of sieve methods. Asymptotic bounds on twin primes The convergence of the sum of reciprocals of twin primes follows from bounds on the density of the sequence of twin primes. Let \pi_2(x) denote the number of primes ''p'' ≤ ''x'' for which ''p'' + 2 is also prime (i.e. \pi_2(x) is the number of twin primes with the smaller at most ''x''). Then, we have :\pi_2(x) = O\!\left(\frac \right)\!. That is, twin primes are less frequent than prime numbers by nearly a logarithmic factor. This bound gives the intuition that the sum of the reciprocals of the twin primes converges, or stated in other words, the twin primes form a small set. In explicit terms, the sum :\su ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ideal (set Theory)
In the mathematical field of set theory, an ideal is a partially ordered collection of sets that are considered to be "small" or "negligible". Every subset of an element of the ideal must also be in the ideal (this codifies the idea that an ideal is a notion of smallness), and the union of any two elements of the ideal must also be in the ideal. More formally, given a set X, an ideal I on X is a nonempty subset of the powerset of X, such that: # if A \in I and B \subseteq A, then B \in I, and # if A, B \in I then A \cup B \in I. Some authors add a fourth condition that X itself is not in I; ideals with this extra property are called . Ideals in the set-theoretic sense are exactly ideals in the order-theoretic sense, where the relevant order is set inclusion. Also, they are exactly ideals in the ring-theoretic sense on the Boolean ring formed by the powerset of the underlying set. The dual notion of an ideal is a filter. Terminology An element of an ideal I is said to be ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Convergent Series
In mathematics, a series is the sum of the terms of an infinite sequence of numbers. More precisely, an infinite sequence (a_1, a_2, a_3, \ldots) defines a series that is denoted :S=a_1 + a_2 + a_3 + \cdots=\sum_^\infty a_k. The th partial sum is the sum of the first terms of the sequence; that is, :S_n = a_1 +a_2 + \cdots + a_n = \sum_^n a_k. A series is convergent (or converges) if and only if the sequence (S_1, S_2, S_3, \dots) of its partial sums tends to a limit; that means that, when adding one a_k after the other ''in the order given by the indices'', one gets partial sums that become closer and closer to a given number. More precisely, a series converges, if and only if there exists a number \ell such that for every arbitrarily small positive number \varepsilon, there is a (sufficiently large) integer N such that for all n \ge N, :\left , S_n - \ell \right , 1 produce a convergent series: *: ++++++\cdots = . * Alternating the signs of reciprocals of powers o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Union (set Theory)
In set theory, the union (denoted by ∪) of a collection of Set (mathematics), sets is the set of all element (set theory), elements in the collection. It is one of the fundamental operations through which sets can be combined and related to each other. A refers to a union of Zero, zero () sets and it is by definition equal to the empty set. For explanation of the symbols used in this article, refer to the List of mathematical symbols, table of mathematical symbols. Binary union The union of two sets ''A'' and ''B'' is the set of elements which are in ''A'', in ''B'', or in both ''A'' and ''B''. In set-builder notation, : A \cup B = \. For example, if ''A'' = and ''B'' = then ''A'' ∪ ''B'' = . A more elaborate example (involving two infinite sets) is: : ''A'' = : ''B'' = : A \cup B = \ As another example, the number 9 is ''not'' contained in the union of the set of prime numbers and the set of even numbers , because 9 is neither prime nor even. Sets cannot ha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Subset
In mathematics, a Set (mathematics), set ''A'' is a subset of a set ''B'' if all Element (mathematics), elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are unequal, then ''A'' is a proper subset of ''B''. The relationship of one set being a subset of another is called inclusion (or sometimes containment). ''A'' is a subset of ''B'' may also be expressed as ''B'' includes (or contains) ''A'' or ''A'' is included (or contained) in ''B''. A ''k''-subset is a subset with ''k'' elements. When quantified, A \subseteq B is represented as \forall x \left(x \in A \Rightarrow x \in B\right). One can prove the statement A \subseteq B by applying a proof technique known as the element argument:Let sets ''A'' and ''B'' be given. To prove that A \subseteq B, # suppose that ''a'' is a particular but arbitrarily chosen element of A # show that ''a'' is an element of ''B''. The validity of this technique ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Dirichlet's Theorem On Arithmetic Progressions
In number theory, Dirichlet's theorem, also called the Dirichlet prime number theorem, states that for any two positive coprime integers ''a'' and ''d'', there are infinitely many primes of the form ''a'' + ''nd'', where ''n'' is also a positive integer. In other words, there are infinitely many primes that are congruent to ''a'' modulo ''d''. The numbers of the form ''a'' + ''nd'' form an arithmetic progression :a,\ a+d,\ a+2d,\ a+3d,\ \dots,\ and Dirichlet's theorem states that this sequence contains infinitely many prime numbers. The theorem extends Euclid's theorem that there are infinitely many prime numbers (of the form 1 + 2n). Stronger forms of Dirichlet's theorem state that for any such arithmetic progression, the sum of the reciprocals of the prime numbers in the progression diverges and that different such arithmetic progressions with the same modulus have approximately the same proportions of primes. Equivalently, the primes are evenly dis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Asymptotic Density
In number theory, natural density, also referred to as asymptotic density or arithmetic density, is one method to measure how "large" a subset of the set of natural numbers is. It relies chiefly on the probability of encountering members of the desired subset when combing through the interval as grows large. For example, it may seem intuitively that there are more positive integers than perfect squares, because every perfect square is already positive and yet many other positive integers exist besides. However, the set of positive integers is not in fact larger than the set of perfect squares: both sets are infinite and countable and can therefore be put in one-to-one correspondence. Nevertheless if one goes through the natural numbers, the squares become increasingly scarce. The notion of natural density makes this intuition precise for many, but not all, subsets of the naturals (see Schnirelmann density, which is similar to natural density but defined for all subsets of \math ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kempner Series
The Kempner series is a modification of the harmonic series, formed by omitting all terms whose denominator expressed in base 10 contains the digit 9. That is, it is the sum : \frac where the prime indicates that ''n'' takes only values whose decimal expansion has no nines. The series was first studied by A. J. Kempner in 1914. The series is counterintuitive because, unlike the harmonic series, it converges. Kempner showed the sum of this series is less than 90. Baillie showed that, rounded to 20 decimals, the actual sum is . Heuristically, this series converges because most large integers contain every digit. For example, a random 100-digit integer is very likely to contain at least one '9', causing it to be excluded from the above sum. Schmelzer and Baillie found an efficient algorithm for the more general problem of any omitted string of digits. For example, the sum of where ''n'' has no instances of "42" is about . Another example: the sum of where ''n'' has no occurren ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Decimal
The decimal numeral system (also called the base-ten positional numeral system and denary or decanary) is the standard system for denoting integer and non-integer numbers. It is the extension to non-integer numbers (''decimal fractions'') of the Hindu–Arabic numeral system. The way of denoting numbers in the decimal system is often referred to as ''decimal notation''. A decimal numeral (also often just ''decimal'' or, less correctly, ''decimal number''), refers generally to the notation of a number in the decimal numeral system. Decimals may sometimes be identified by a decimal separator (usually "." or "," as in or ). ''Decimal'' may also refer specifically to the digits after the decimal separator, such as in " is the approximation of to ''two decimals''". Zero-digits after a decimal separator serve the purpose of signifying the precision of a value. The numbers that may be represented in the decimal system are the decimal fractions. That is, fractions of the form , w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Numeral System
A numeral system is a writing system for expressing numbers; that is, a mathematical notation for representing numbers of a given set, using digits or other symbols in a consistent manner. The same sequence of symbols may represent different numbers in different numeral systems. For example, "11" represents the number ''eleven'' in the decimal or base-10 numeral system (today, the most common system globally), the number ''three'' in the binary or base-2 numeral system (used in modern computers), and the number ''two'' in the unary numeral system (used in tallying scores). The number the numeral represents is called its ''value''. Additionally, not all number systems can represent the same set of numbers; for example, Roman, Greek, and Egyptian numerals don't have a representation of the number zero. Ideally, a numeral system will: *Represent a useful set of numbers (e.g. all integers, or rational numbers) *Give every number represented a unique representation (or a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Powerful Number
A powerful number is a positive integer ''m'' such that for every prime number ''p'' dividing ''m'', ''p''2 also divides ''m''. Equivalently, a powerful number is the product of a square and a cube, that is, a number ''m'' of the form ''m'' = ''a''2''b''3, where ''a'' and ''b'' are positive integers. Powerful numbers are also known as squareful, square-full, or 2-full. Paul Erdős and George Szekeres studied such numbers and Solomon W. Golomb named such numbers ''powerful''. The following is a list of all powerful numbers between 1 and 1000: :1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 72, 81, 100, 108, 121, 125, 128, 144, 169, 196, 200, 216, 225, 243, 256, 288, 289, 324, 343, 361, 392, 400, 432, 441, 484, 500, 512, 529, 576, 625, 648, 675, 676, 729, 784, 800, 841, 864, 900, 961, 968, 972, 1000, ... . Equivalence of the two definitions If ''m'' = ''a''2''b''3, then every prime in the prime factorization of ''a'' appears in the prime factorization of ''m'' with an exponent of at le ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]