HOME
*





Ideal (set Theory)
In the mathematical field of set theory, an ideal is a partially ordered collection of sets that are considered to be "small" or "negligible". Every subset of an element of the ideal must also be in the ideal (this codifies the idea that an ideal is a notion of smallness), and the union of any two elements of the ideal must also be in the ideal. More formally, given a set X, an ideal I on X is a nonempty subset of the powerset of X, such that: # \varnothing \in I, # if A \in I and B \subseteq A, then B \in I, and # if A, B \in I then A \cup B \in I. Some authors add a fourth condition that X itself is not in I; ideals with this extra property are called . Ideals in the set-theoretic sense are exactly ideals in the order-theoretic sense, where the relevant order is set inclusion. Also, they are exactly ideals in the ring-theoretic sense on the Boolean ring formed by the powerset of the underlying set. The dual notion of an ideal is a filter. Terminology An element of an ide ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Set Theory
Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics, is mostly concerned with those that are relevant to mathematics as a whole. The modern study of set theory was initiated by the German mathematicians Richard Dedekind and Georg Cantor in the 1870s. In particular, Georg Cantor is commonly considered the founder of set theory. The non-formalized systems investigated during this early stage go under the name of '' naive set theory''. After the discovery of paradoxes within naive set theory (such as Russell's paradox, Cantor's paradox and the Burali-Forti paradox) various axiomatic systems were proposed in the early twentieth century, of which Zermelo–Fraenkel set theory (with or without the axiom of choice) is still the best-known and most studied. Set theory is commonly employed as a foundational ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Power Set
In mathematics, the power set (or powerset) of a set is the set of all subsets of , including the empty set and itself. In axiomatic set theory (as developed, for example, in the ZFC axioms), the existence of the power set of any set is postulated by the axiom of power set. The powerset of is variously denoted as , , , \mathbb(S), or . The notation , meaning the set of all functions from S to a given set of two elements (e.g., ), is used because the powerset of can be identified with, equivalent to, or bijective to the set of all the functions from to the given two elements set. Any subset of is called a ''family of sets'' over . Example If is the set , then all the subsets of are * (also denoted \varnothing or \empty, the empty set or the null set) * * * * * * * and hence the power set of is . Properties If is a finite set with the cardinality (i.e., the number of all elements in the set is ), then the number of all the subsets of is . This fact as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Symmetric Difference
In mathematics, the symmetric difference of two sets, also known as the disjunctive union, is the set of elements which are in either of the sets, but not in their intersection. For example, the symmetric difference of the sets \ and \ is \. The symmetric difference of the sets ''A'' and ''B'' is commonly denoted by A \ominus B, or A\operatorname \triangle B. The power set of any set becomes an abelian group under the operation of symmetric difference, with the empty set as the neutral element of the group and every element in this group being its own inverse. The power set of any set becomes a Boolean ring, with symmetric difference as the addition of the ring and intersection as the multiplication of the ring. Properties The symmetric difference is equivalent to the union of both relative complements, that is: :A\,\triangle\,B = \left(A \setminus B\right) \cup \left(B \setminus A\right), The symmetric difference can also be expressed using the XOR operation ⊕ on t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Equivalence Relation
In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation. Each equivalence relation provides a partition of the underlying set into disjoint equivalence classes. Two elements of the given set are equivalent to each other if and only if they belong to the same equivalence class. Notation Various notations are used in the literature to denote that two elements a and b of a set are equivalent with respect to an equivalence relation R; the most common are "a \sim b" and "", which are used when R is implicit, and variations of "a \sim_R b", "", or "" to specify R explicitly. Non-equivalence may be written "" or "a \not\equiv b". Definition A binary relation \,\sim\, on a set X is said to be an equivalence relation, if and only if it is reflexive, symmetric and transitive. That is, for all a, b, and c in X: * a \sim a ( ref ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cartesian Product
In mathematics, specifically set theory, the Cartesian product of two sets ''A'' and ''B'', denoted ''A''×''B'', is the set of all ordered pairs where ''a'' is in ''A'' and ''b'' is in ''B''. In terms of set-builder notation, that is : A\times B = \. A table can be created by taking the Cartesian product of a set of rows and a set of columns. If the Cartesian product is taken, the cells of the table contain ordered pairs of the form . One can similarly define the Cartesian product of ''n'' sets, also known as an ''n''-fold Cartesian product, which can be represented by an ''n''-dimensional array, where each element is an ''n''-tuple. An ordered pair is a 2-tuple or couple. More generally still, one can define the Cartesian product of an indexed family of sets. The Cartesian product is named after René Descartes, whose formulation of analytic geometry gave rise to the concept, which is further generalized in terms of direct product. Examples A deck of cards An ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stationary Set
In mathematics, specifically set theory and model theory, a stationary set is a set that is not too small in the sense that it intersects all club sets, and is analogous to a set of non-zero measure in measure theory. There are at least three closely related notions of stationary set, depending on whether one is looking at subsets of an ordinal, or subsets of something of given cardinality, or a powerset. Classical notion If \kappa is a cardinal of uncountable cofinality, S \subseteq \kappa, and S intersects every club set in \kappa, then S is called a stationary set.Jech (2003) p.91 If a set is not stationary, then it is called a thin set. This notion should not be confused with the notion of a thin set in number theory. If S is a stationary set and C is a club set, then their intersection S \cap C is also stationary. This is because if D is any club set, then C \cap D is a club set, thus (S \cap C) \cap D = S \cap (C \cap D) is non empty. Therefore, (S \cap C) must be stati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cofinality
In mathematics, especially in order theory, the cofinality cf(''A'') of a partially ordered set ''A'' is the least of the cardinalities of the cofinal subsets of ''A''. This definition of cofinality relies on the axiom of choice, as it uses the fact that every non-empty set of cardinal numbers has a least member. The cofinality of a partially ordered set ''A'' can alternatively be defined as the least ordinal ''x'' such that there is a function from ''x'' to ''A'' with cofinal image. This second definition makes sense without the axiom of choice. If the axiom of choice is assumed, as will be the case in the rest of this article, then the two definitions are equivalent. Cofinality can be similarly defined for a directed set and is used to generalize the notion of a subsequence in a net. Examples * The cofinality of a partially ordered set with greatest element is 1 as the set consisting only of the greatest element is cofinal (and must be contained in every other cofinal subse ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ordinal Number
In set theory, an ordinal number, or ordinal, is a generalization of ordinal numerals (first, second, th, etc.) aimed to extend enumeration to infinite sets. A finite set can be enumerated by successively labeling each element with the least natural number that has not been previously used. To extend this process to various infinite sets, ordinal numbers are defined more generally as linearly ordered labels that include the natural numbers and have the property that every set of ordinals has a least element (this is needed for giving a meaning to "the least unused element"). This more general definition allows us to define an ordinal number \omega that is greater than every natural number, along with ordinal numbers \omega + 1, \omega + 2, etc., which are even greater than \omega. A linear order such that every subset has a least element is called a well-order. The axiom of choice implies that every set can be well-ordered, and given two well-ordered sets, one is isomorphic to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Meager Set
In the mathematical field of general topology, a meagre set (also called a meager set or a set of first category) is a subset of a topological space that is small or negligible in a precise sense detailed below. A set that is not meagre is called nonmeagre, or of the second category. See below for definitions of other related terms. The meagre subsets of a fixed space form a σ-ideal of subsets; that is, any subset of a meagre set is meagre, and the union of countably many meagre sets is meagre. Meagre sets play an important role in the formulation of the notion of Baire space and of the Baire category theorem, which is used in the proof of several fundamental results of functional analysis. Definitions Throughout, X will be a topological space. A subset of X is called X, a of X, or of the in X if it is a countable union of nowhere dense subsets of X (where a nowhere dense set is a set whose closure has empty interior). The qualifier "in X" can be omitted if the ambient ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lebesgue Measure
In measure theory, a branch of mathematics, the Lebesgue measure, named after French mathematician Henri Lebesgue, is the standard way of assigning a measure to subsets of ''n''-dimensional Euclidean space. For ''n'' = 1, 2, or 3, it coincides with the standard measure of length, area, or volume. In general, it is also called ''n''-dimensional volume, ''n''-volume, or simply volume. It is used throughout real analysis, in particular to define Lebesgue integration. Sets that can be assigned a Lebesgue measure are called Lebesgue-measurable; the measure of the Lebesgue-measurable set ''A'' is here denoted by ''λ''(''A''). Henri Lebesgue described this measure in the year 1901, followed the next year by his description of the Lebesgue integral. Both were published as part of his dissertation in 1902. Definition For any interval I = ,b/math>, or I = (a, b), in the set \mathbb of real numbers, let \ell(I)= b - a denote its length. For any subset E\subseteq\mathbb, the Lebesgue oute ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Real Number
In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every real number can be almost uniquely represented by an infinite decimal expansion. The real numbers are fundamental in calculus (and more generally in all mathematics), in particular by their role in the classical definitions of limits, continuity and derivatives. The set of real numbers is denoted or \mathbb and is sometimes called "the reals". The adjective ''real'' in this context was introduced in the 17th century by René Descartes to distinguish real numbers, associated with physical reality, from imaginary numbers (such as the square roots of ), which seemed like a theoretical contrivance unrelated to physical reality. The real numbers include the rational numbers, such as the integer and the fraction . The rest of the real number ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Asymptotic Density
In number theory, natural density (also referred to as asymptotic density or arithmetic density) is one method to measure how "large" a subset of the set of natural numbers is. It relies chiefly on the probability of encountering members of the desired subset when combing through the interval as ''n '' grows large. Intuitively, it is thought that there are more positive integers than perfect squares, since every perfect square is already positive, and many other positive integers exist besides. However, the set of positive integers is not in fact larger than the set of perfect squares: both sets are infinite and countable and can therefore be put in one-to-one correspondence. Nevertheless if one goes through the natural numbers, the squares become increasingly scarce. The notion of natural density makes this intuition precise for many, but not all, subsets of the naturals (see Schnirelmann density, which is similar to natural density but defined for all subsets of \mathbb). If ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]