HOME
*





Singular Cardinals Hypothesis
In set theory, the singular cardinals hypothesis (SCH) arose from the question of whether the least cardinal number for which the generalized continuum hypothesis (GCH) might fail could be a singular cardinal. According to Mitchell (1992), the singular cardinals hypothesis is: :If ''κ'' is any singular strong limit cardinal, then 2''κ'' = ''κ''+. Here, ''κ''+ denotes the successor cardinal of ''κ''. Since SCH is a consequence of GCH, which is known to be consistent with ZFC, SCH is consistent with ZFC. The negation of SCH has also been shown to be consistent with ZFC, if one assumes the existence of a sufficiently large cardinal number. In fact, by results of Moti Gitik, ZFC + the negation of SCH is equiconsistent with ZFC + the existence of a measurable cardinal ''κ'' of Mitchell order ''κ''++. Another form of the SCH is the following statement: :2cf(''κ'') \kappa^+ —a violation of the SCH. Gitik, building on work of Woo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Set Theory
Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics, is mostly concerned with those that are relevant to mathematics as a whole. The modern study of set theory was initiated by the German mathematicians Richard Dedekind and Georg Cantor in the 1870s. In particular, Georg Cantor is commonly considered the founder of set theory. The non-formalized systems investigated during this early stage go under the name of '' naive set theory''. After the discovery of paradoxes within naive set theory (such as Russell's paradox, Cantor's paradox and the Burali-Forti paradox) various axiomatic systems were proposed in the early twentieth century, of which Zermelo–Fraenkel set theory (with or without the axiom of choice) is still the best-known and most studied. Set theory is commonly employed as a foundational ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Generic Ultrapowers
Generic or generics may refer to: In business * Generic term, a common name used for a range or class of similar things not protected by trademark * Generic brand, a brand for a product that does not have an associated brand or trademark, other than the trading name of the business providing the product * Generic trademark, a trademark that sometimes or usually replaces a common term in colloquial usage * Generic drug, a drug identified by its chemical name rather than its brand name In computer programming * Generic function, a computer programming entity made up of all methods having the same name * Generic programming, a computer programming paradigm based on method/functions or classes defined irrespective of the concrete data types used upon instantiation ** Generics in Java In linguistics *A pronoun or other word used with a less specific meaning, such as: ** generic ''you'' ** generic ''he'' or generic ''she'' ** generic ''they'' * Generic mood, a grammatical mood used ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Trans
Trans- is a Latin prefix meaning "across", "beyond", or "on the other side of". Used alone, trans may refer to: Arts, entertainment, and media * Trans (festival), a former festival in Belfast, Northern Ireland, United Kingdom * ''Trans'' (film), a 1998 American film * Trans Corp, an Indonesian business unit of CT Corp in the fields of media, lifestyle, and entertainment ** Trans Media, a media subsidiary of Trans Corp *** Trans TV, an Indonesian television network *** Trans7, an Indonesian television network Literature * '' Trans: Gender and Race in an Age of Unsettled Identities'', a 2016 book by Rogers Brubaker * '' Trans: When Ideology Meets Reality'', a 2021 book by Helen Joyce Music * ''Trans'' (album), by Neil Young * ''Trans'' (Stockhausen), a 1971 orchestral composition Places * Trans, Mayenne, France, a commune * Trans, Switzerland, a village Science and technology * Trans effect in inorganic chemistry, the increased lability of ligands that are trans to certain o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fundamenta Mathematicae
''Fundamenta Mathematicae'' is a peer-reviewed scientific journal of mathematics with a special focus on the foundations of mathematics, concentrating on set theory, mathematical logic, topology and its interactions with algebra, and dynamical systems. Originally it only covered topology, set theory, and foundations of mathematics: it was the first specialized journal in the field of mathematics..... It is published by the Mathematics Institute of the Polish Academy of Sciences. History The journal was conceived by Zygmunt Janiszewski as a means to foster mathematical research in Poland.According to and to the introduction to the 100th volume of the journal (1978, pp=1–2). These two sources cite an article written by Janiszewski himself in 1918 and titled "''On the needs of Mathematics in Poland''". Janiszewski required that, in order to achieve its goal, the journal should not force Polish mathematicians to submit articles written exclusively in Polish, and should be devoted ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Thomas Jech
Thomas J. Jech ( cs, Tomáš Jech, ; born January 29, 1944 in Prague) is a mathematician specializing in set theory who was at Penn State for more than 25 years. Life He was educated at Charles University (his advisor was Petr Vopěnka) and from 2000 is at thInstitute of Mathematicsof the Academy of Sciences of the Czech Republic. Work Jech's research also includes mathematical logic, algebra, analysis, topology, and measure theory. Jech gave the first published proof of the consistency of the existence of a Suslin line. With Karel Prikry, he introduced the notion of precipitous ideal. He gave several models where the axiom of choice failed, for example one with ω1 measurable. The concept of a Jech–Kunen tree is named after him and Kenneth Kunen Herbert Kenneth Kunen (August 2, 1943August 14, 2020) was a professor of mathematics at the University of Wisconsin–Madison who worked in set theory and its applications to various areas of mathematics, such as set-theoretic to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Strongly Compact Cardinal
In set theory, a branch of mathematics, a strongly compact cardinal is a certain kind of large cardinal. A cardinal κ is strongly compact if and only if every κ-complete filter can be extended to a κ-complete ultrafilter. Strongly compact cardinals were originally defined in terms of infinitary logic, where logical operators are allowed to take infinitely many operands. The logic on a regular cardinal κ is defined by requiring the number of operands for each operator to be less than κ; then κ is strongly compact if its logic satisfies an analog of the compactness property of finitary logic. Specifically, a statement which follows from some other collection of statements should also follow from some subcollection having cardinality less than κ. The property of strong compactness may be weakened by only requiring this compactness property to hold when the original collection of statements has cardinality below a certain cardinal λ; we may then refer to λ-compactness. A card ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Robert M
The name Robert is an ancient Germanic given name, from Proto-Germanic "fame" and "bright" (''Hrōþiberhtaz''). Compare Old Dutch ''Robrecht'' and Old High German ''Hrodebert'' (a compound of '' Hruod'' ( non, Hróðr) "fame, glory, honour, praise, renown" and ''berht'' "bright, light, shining"). It is the second most frequently used given name of ancient Germanic origin. It is also in use as a surname. Another commonly used form of the name is Rupert. After becoming widely used in Continental Europe it entered England in its Old French form ''Robert'', where an Old English cognate form (''Hrēodbēorht'', ''Hrodberht'', ''Hrēodbēorð'', ''Hrœdbœrð'', ''Hrœdberð'', ''Hrōðberχtŕ'') had existed before the Norman Conquest. The feminine version is Roberta. The Italian, Portuguese, and Spanish form is Roberto. Robert is also a common name in many Germanic languages, including English, German, Dutch, Norwegian, Swedish, Scots, Danish, and Icelandic. It can be use ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Proper Forcing Axiom
In the mathematical field of set theory, the proper forcing axiom (''PFA'') is a significant strengthening of Martin's axiom, where forcings with the countable chain condition (ccc) are replaced by proper forcings. Statement A forcing or partially ordered set P is proper if for all regular uncountable cardinals \lambda , forcing with P preserves stationary subsets of lambda\omega . The proper forcing axiom asserts that if P is proper and Dα is a dense subset of P for each α<ω1, then there is a filter G \subseteq P such that Dα ∩ G is nonempty for all α<ω1. The class of proper forcings, to which PFA can be applied, is rather large. For example, standard arguments show that if P is or
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Inner Model Theory
In set theory, inner model theory is the study of certain models of ZFC or some fragment or strengthening thereof. Ordinarily these models are transitive subsets or subclasses of the von Neumann universe ''V'', or sometimes of a generic extension of ''V''. Inner model theory studies the relationships of these models to determinacy, large cardinals, and descriptive set theory. Despite the name, it is considered more a branch of set theory than of model theory. Examples *The class of all sets is an inner model containing all other inner models. *The first non-trivial example of an inner model was the constructible universe ''L'' developed by Kurt Gödel. Every model ''M'' of ZF has an inner model ''L''M satisfying the axiom of constructibility, and this will be the smallest inner model of ''M'' containing all the ordinals of ''M''. Regardless of the properties of the original model, ''L''''M'' will satisfy the generalized continuum hypothesis and combinatorial axioms such as the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Prikry Forcing
In mathematics, forcing is a method of constructing new models ''M'' 'G''of set theory by adding a generic subset ''G'' of a poset ''P'' to a model ''M''. The poset ''P'' used will determine what statements hold in the new universe (the 'extension'); to force a statement of interest thus requires construction of a suitable ''P''. This article lists some of the posets ''P'' that have been used in this construction. Notation *''P'' is a poset with order < *''V'' is the universe of all sets *''M'' is a countable transitive model of set theory *''G'' is a generic subset of ''P'' over ''M''.


Definitions

*''P'' satisfies the if every antichain in ''P'' is at most countable. This implies that ''V'' and ''V'' 'G''have the same car ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Supercompact Cardinal
In set theory, a supercompact cardinal is a type of large cardinal. They display a variety of reflection properties. Formal definition If ''λ'' is any ordinal, ''κ'' is ''λ''-supercompact means that there exists an elementary embedding ''j'' from the universe ''V'' into a transitive inner model ''M'' with critical point ''κ'', ''j''(''κ'')>''λ'' and :^\lambda M\subseteq M \,. That is, ''M'' contains all of its ''λ''-sequences. Then ''κ'' is supercompact means that it is ''λ''-supercompact for all ordinals ''λ''. Alternatively, an uncountable cardinal ''κ'' is supercompact if for every ''A'' such that , ''A'', ≥ ''κ'' there exists a normal measure over 'A''sup>< ''κ'' with the additional property that every function f: \to A such that \ \in U is constant on a set in U. Here "constan ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ultrafilter (set Theory)
In the mathematical field of set theory, an ultrafilter is a ''maximal proper filter'': it is a filter U on a given non-empty set X which is a certain type of non-empty family of subsets of X, that is not equal to the power set \wp(X) of X (such filters are called ) and that is also "maximal" in that there does not exist any other proper filter on X that contains it as a proper subset. Said differently, a proper filter U is called an ultrafilter if there exists proper filter that contains it as a subset, that proper filter (necessarily) being U itself. More formally, an ultrafilter U on X is a proper filter that is also a maximal filter on X with respect to set inclusion, meaning that there does not exist any proper filter on X that contains U as a proper subset. Ultrafilters on sets are an important special instance of ultrafilters on partially ordered sets, where the partially ordered set consists of the power set \wp(X) and the partial order is subset inclusion \,\subsete ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]