HOME
*



picture info

Singular Boundary Method
In numerical analysis, the singular boundary method (SBM) belongs to a family of meshless boundary collocation techniques which include the method of fundamental solutions (MFS), boundary knot method (BKM), regularized meshless method (RMM), boundary particle method (BPM), modified MFS, and so on. This family of strong-form collocation methods is designed to avoid singular numerical integration and mesh generation in the traditional boundary element method (BEM) in the numerical solution of boundary value problems with boundary nodes, in which a fundamental solution of the governing equation is explicitly known. The salient feature of the SBM is to overcome the fictitious boundary in the method of fundamental solution, while keeping all merits of the latter. The method offers several advantages over the classical domain or boundary discretization methods, among which are: * meshless. The method requires neither domain nor boundary meshing but boundary-only discretization point ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




SBM And MFS 01
SBM may stand for: Science, technology, international development * Satellite-based monitoring, transport tracking systems via GPS technologies * SBm, a type of barred spiral irregular galaxy * School business manager, member of non-teaching staff responsible for non-teaching activity * Science-Based_Medicine a blog about evidence supported healthcare * Single buoy mooring, mooring point and interconnect for tankers loading or offloading * Sociedade Brasileira de Matemática "Brazilian Mathematical Society" is a professional association founded in 1969. *Stochastic block model, a generative model for random graphs * Super Bit Mapping, a noise shaping process developed by Sony * Swachh Bharat Mission, the "Clean India Mission" from 2014 onwards Transportation * Sheboygan County Memorial Airport's IATA code * Shepherd's Bush Market tube station, London, London Underground station code * South Bermondsey railway station, London, National Rail station code Organizations and locations ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


MFS And SBM 02
MFS may refer to: Education *Miletich Fighting Systems, a mixed martial arts training camp founded by Pat Miletich *Moorestown Friends School, a private Quaker school located in Moorestown, New Jersey *Moscow Finnish School, a Finnish private school in Russia Politics and religion *Maryknoll Fathers' School, a government-funded co-ed in Hong Kong SAR, P.R.C. *Master of Forensic Sciences, a specialized professional degree *Meeting for Sufferings, a consultative body in Britain Yearly Meeting of the Religious Society of Friends (Quakers) *Metropolitan Fire Service, South Australia's government-funded fire service *Stasi, or Ministry for State Security (''Ministerium für Staatssicherheit''), the security and intelligence organisation of the German Democratic Republic *Syriac Military Council (ܡܘܬܒܐ ܦܘܠܚܝܐ ܣܘܪܝܝܐ, ''Mawtbo Fulhoyo Suryoyo'') Technology *Macintosh File System, disk file system created by Apple Computer for storing files on 400K floppy disks *MIN ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Numerical Analysis
Numerical analysis is the study of algorithms that use numerical approximation (as opposed to symbolic manipulations) for the problems of mathematical analysis (as distinguished from discrete mathematics). It is the study of numerical methods that attempt at finding approximate solutions of problems rather than the exact ones. Numerical analysis finds application in all fields of engineering and the physical sciences, and in the 21st century also the life and social sciences, medicine, business and even the arts. Current growth in computing power has enabled the use of more complex numerical analysis, providing detailed and realistic mathematical models in science and engineering. Examples of numerical analysis include: ordinary differential equations as found in celestial mechanics (predicting the motions of planets, stars and galaxies), numerical linear algebra in data analysis, and stochastic differential equations and Markov chains for simulating living cells in medicine an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Meshfree Method
In the field of numerical analysis, meshfree methods are those that do not require connection between nodes of the simulation domain, i.e. a mesh, but are rather based on interaction of each node with all its neighbors. As a consequence, original extensive properties such as mass or kinetic energy are no longer assigned to mesh elements but rather to the single nodes. Meshfree methods enable the simulation of some otherwise difficult types of problems, at the cost of extra computing time and programming effort. The absence of a mesh allows Lagrangian simulations, in which the nodes can move according to the velocity field. Motivation Numerical methods such as the finite difference method, finite-volume method, and finite element method were originally defined on meshes of data points. In such a mesh, each point has a fixed number of predefined neighbors, and this connectivity between neighbors can be used to define mathematical operators like the derivative. These operators ar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Collocation Method
In mathematics, a collocation method is a method for the numerical solution of ordinary differential equations, partial differential equations and integral equations. The idea is to choose a finite-dimensional space of candidate solutions (usually polynomials up to a certain degree) and a number of points in the domain (called ''collocation points''), and to select that solution which satisfies the given equation at the collocation points. Ordinary differential equations Suppose that the ordinary differential equation : y'(t) = f(t,y(t)), \quad y(t_0)=y_0, is to be solved over the interval _0,t_0+c_k h/math>. Choose c_k from 0 ≤ ''c''1< ''c''2< … < ''c''''n'' ≤ 1. The corresponding (polynomial) collocation method approximates the solution ''y'' by the polynomial ''p'' of degree ''n'' which satisfies the initial condition p(t_0) = y_0, and the differential equation p'(t_k) = f(t_k,p(t_k)) at all ''collocation points' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Method Of Fundamental Solutions
In scientific computation and simulation, the method of fundamental solutions (MFS) is a technique for solving partial differential equations based on using the fundamental solution as a basis function. The MFS was developed to overcome the major drawbacks in the boundary element method (BEM) which also uses the fundamental solution to satisfy the governing equation. Consequently, both the MFS and the BEM are of a boundary discretization numerical technique and reduce the computational complexity by one dimensionality and have particular edge over the domain-type numerical techniques such as the finite element and finite volume methods on the solution of infinite domain, thin-walled structures, and inverse problems. In contrast to the BEM, the MFS avoids the numerical integration of singular fundamental solution and is an inherent meshfree method. The method, however, is compromised by requiring a controversial fictitious boundary outside the physical domain to circumvent the sing ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Boundary Knot Method
In numerical mathematics, the boundary knot method (BKM) is proposed as an alternative boundary-type meshfree distance function collocation scheme. Recent decades have witnessed a research boom on the meshfree numerical PDE techniques since the construction of a mesh in the standard finite element method and boundary element method is not trivial especially for moving boundary, and higher-dimensional problems. The boundary knot method is different from the other methods based on the fundamental solutions, such as boundary element method, method of fundamental solutions and singular boundary method in that the former does not require special techniques to cure the singularity. The BKM is truly meshfree, spectral convergent (numerical observations), symmetric (self-adjoint PDEs), integration-free, and easy to learn and implement. The method has successfully been tested to the Helmholtz, diffusion, convection-diffusion, and Possion equations with very irregular 2D and 3D domains. De ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Regularized Meshless Method
In numerical mathematics, the regularized meshless method (RMM), also known as the singular meshless method or desingularized meshless method, is a meshless boundary collocation method designed to solve certain partial differential equations whose fundamental solution is explicitly known. The RMM is a strong-form collocation method with merits being meshless, integration-free, easy-to-implement, and high stability. Until now this method has been successfully applied to some typical problems, such as potential, acoustics, water wave, and inverse problems of bounded and unbounded domains. Description The RMM employs the double layer potentials from the potential theory as its basis/kernel functions. Like the method of fundamental solutions (MFS), the numerical solution is approximated by a linear combination of double layer kernel functions with respect to different source points. Unlike the MFS, the collocation and source points of the RMM, however, are coincident and placed on th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Boundary Particle Method
In applied mathematics, the boundary particle method (BPM) is a boundary-only meshless (meshfree) collocation technique, in the sense that none of inner nodes are required in the numerical solution of nonhomogeneous partial differential equations. Numerical experiments show that the BPM has spectral convergence. Its interpolation matrix can be symmetric. History and recent developments In recent decades, the dual reciprocity method (DRM) and multiple reciprocity method (MRM) have been emerging as promising techniques to evaluate the particular solution of nonhomogeneous partial differential equations in conjunction with the boundary discretization techniques, such as boundary element method (BEM). For instance, the so-called DR-BEM and MR-BEM are popular BEM techniques in the numerical solution of nonhomogeneous problems. The DRM has become a common method to evaluate the particular solution. However, the DRM requires inner nodes to guarantee the convergence and stability ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Boundary Element Method
The boundary element method (BEM) is a numerical computational method of solving linear partial differential equations which have been formulated as integral equations (i.e. in ''boundary integral'' form), including fluid mechanics, acoustics, electromagnetics (where the technique is known as method of moments or abbreviated as MoM), fracture mechanics, and contact mechanics. Mathematical basis The integral equation may be regarded as an exact solution of the governing partial differential equation. The boundary element method attempts to use the given boundary conditions to fit boundary values into the integral equation, rather than values throughout the space defined by a partial differential equation. Once this is done, in the post-processing stage, the integral equation can then be used again to calculate numerically the solution directly at any desired point in the interior of the solution domain. BEM is applicable to problems for which Green's functions can be calculated ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hyperbolic Sine
In mathematics, hyperbolic functions are analogues of the ordinary trigonometric functions, but defined using the hyperbola rather than the circle. Just as the points form a circle with a unit radius, the points form the right half of the unit hyperbola. Also, similarly to how the derivatives of and are and respectively, the derivatives of and are and respectively. Hyperbolic functions occur in the calculations of angles and distances in hyperbolic geometry. They also occur in the solutions of many linear differential equations (such as the equation defining a catenary), cubic equations, and Laplace's equation in Cartesian coordinates. Laplace's equations are important in many areas of physics, including electromagnetic theory, heat transfer, fluid dynamics, and special relativity. The basic hyperbolic functions are: * hyperbolic sine "" (), * hyperbolic cosine "" (),''Collins Concise Dictionary'', p. 328 from which are derived: * hyperbolic tangent "" () ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fast Multipole Method
__NOTOC__ The fast multipole method (FMM) is a numerical technique that was developed to speed up the calculation of long-ranged forces in the ''n''-body problem. It does this by expanding the system Green's function using a multipole expansion, which allows one to group sources that lie close together and treat them as if they are a single source. The FMM has also been applied in accelerating the iterative solver in the method of moments (MOM) as applied to computational electromagnetics problems. The FMM was first introduced in this manner by Leslie Greengard and Vladimir Rokhlin Jr. and is based on the multipole expansion of the vector Helmholtz equation. By treating the interactions between far-away basis functions using the FMM, the corresponding matrix elements do not need to be explicitly stored, resulting in a significant reduction in required memory. If the FMM is then applied in a hierarchical manner, it can improve the complexity of matrix-vector products in an iterati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]