Similarity System Of Triangles
   HOME
*





Similarity System Of Triangles
A similarity system of triangles is a specific configuration involving a set of triangles. A set of triangles is considered a configuration when all of the triangles share a minimum of one incidence relation with one of the other triangles present in the set. An incidence relation between triangles refers to when two triangles share a point. For example, the two triangles to the right, AHC and BHC, are a configuration made up of two incident relations, since points Cand Hare shared. The triangles that make up configurations are known as component triangles. Triangles must not only be a part of a configuration set to be in a similarity system, but must also be directly similar. Direct similarity implies that all angles are equal between two given triangle and that they share the same rotational sense. As is seen in the adjacent images, in the directly similar triangles, the rotation of B onto C and B^1 onto C^1occurs in the same direction. In the opposite similar triangles, the rot ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Configuration (geometry)
In mathematics, specifically projective geometry, a configuration in the plane consists of a finite set of points, and a finite arrangement of lines, such that each point is incident to the same number of lines and each line is incident to the same number of points. Although certain specific configurations had been studied earlier (for instance by Thomas Kirkman in 1849), the formal study of configurations was first introduced by Theodor Reye in 1876, in the second edition of his book ''Geometrie der Lage'', in the context of a discussion of Desargues' theorem. Ernst Steinitz wrote his dissertation on the subject in 1894, and they were popularized by Hilbert and Cohn-Vossen's 1932 book ''Anschauliche Geometrie'', reprinted in English as . Configurations may be studied either as concrete sets of points and lines in a specific geometry, such as the Euclidean or projective planes (these are said to be ''realizable'' in that geometry), or as a type of abstract incidence geometry. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Incidence (geometry)
In geometry, an incidence relation is a heterogeneous relation that captures the idea being expressed when phrases such as "a point ''lies on'' a line" or "a line is ''contained in'' a plane" are used. The most basic incidence relation is that between a point, , and a line, , sometimes denoted . If the pair is called a ''flag''. There are many expressions used in common language to describe incidence (for example, a line ''passes through'' a point, a point ''lies in'' a plane, etc.) but the term "incidence" is preferred because it does not have the additional connotations that these other terms have, and it can be used in a symmetric manner. Statements such as "line intersects line " are also statements about incidence relations, but in this case, it is because this is a shorthand way of saying that "there exists a point that is incident with both line and line ". When one type of object can be thought of as a set of the other type of object (''viz''., a plane is a set of points) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Napoleon's Theorem
In geometry, Napoleon's theorem states that if equilateral triangles are constructed on the sides of any triangle, either all outward or all inward, the lines connecting the centres of those equilateral triangles themselves form an equilateral triangle. The triangle thus formed is called the inner or outer ''Napoleon triangle''. The difference in the areas of the outer and inner Napoleon triangles equals the area of the original triangle. The theorem is often attributed to Napoleon Bonaparte (1769–1821). Some have suggested that it may date back to W. Rutherford's 1825 question published in ''The Ladies' Diary'', four years after the French emperor's death, but the result is covered in three questions set in an examination for a Gold Medal at the University of Dublin in October, 1820, whereas Napoleon died the following May. Proofs In the figure above, ABC is the original triangle. AZB, BXC, and CYA are equilateral triangles constructed on its sides' exteriors, and points L, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Victor Thébault
Victor Michael Jean-Marie Thébault (1882–1960) was a French mathematician best known for propounding three problems in geometry. The name Thébault's theorem is used by some authors to refer to the first of these problems and by others to refer to the third. Thébault was born on March 6, 1882, in Ambrières-les-Grand (today a part of Ambrières-les-Vallées, Mayenne) in the northwest of France. He got his education at a teacher's college in Laval, where he studied from 1898 to 1901. After his graduation he taught for three years at Pré-en-Pail until he got a professorship at technical school in Ernée. In 1909 he placed first in a competitive exams, which yielded him a certificate to work as a science professor at teachers' colleges. Thébault however found a professor's salary insufficient to support his large family and hence he left teaching to become a factory superintendent at Ernée from 1910 to 1923. In 1924 he became a chief insurance inspector in Le Mans, a position ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Parallelepiped
In geometry, a parallelepiped is a three-dimensional figure formed by six parallelograms (the term ''rhomboid'' is also sometimes used with this meaning). By analogy, it relates to a parallelogram just as a cube relates to a square. In Euclidean geometry, the four concepts—''parallelepiped'' and ''cube'' in three dimensions, ''parallelogram'' and ''square'' in two dimensions—are defined, but in the context of a more general affine geometry, in which angles are not differentiated, only ''parallelograms'' and ''parallelepipeds'' exist. Three equivalent definitions of ''parallelepiped'' are *a polyhedron with six faces (hexahedron), each of which is a parallelogram, *a hexahedron with three pairs of parallel faces, and *a prism of which the base is a parallelogram. The rectangular cuboid (six rectangular faces), cube (six square faces), and the rhombohedron (six rhombus faces) are all specific cases of parallelepiped. "Parallelepiped" is now usually pronounced or ; ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Geometry
Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is called a ''geometer''. Until the 19th century, geometry was almost exclusively devoted to Euclidean geometry, which includes the notions of point, line, plane, distance, angle, surface, and curve, as fundamental concepts. During the 19th century several discoveries enlarged dramatically the scope of geometry. One of the oldest such discoveries is Carl Friedrich Gauss' ("remarkable theorem") that asserts roughly that the Gaussian curvature of a surface is independent from any specific embedding in a Euclidean space. This implies that surfaces can be studied ''intrinsically'', that is, as stand-alone spaces, and has been expanded into the theory of manifolds and Riemannian geometry. Later in the 19th century, it appeared that geometries ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Triangles
A triangle is a polygon with three edges and three vertices. It is one of the basic shapes in geometry. A triangle with vertices ''A'', ''B'', and ''C'' is denoted \triangle ABC. In Euclidean geometry, any three points, when non-collinear, determine a unique triangle and simultaneously, a unique plane (i.e. a two-dimensional Euclidean space). In other words, there is only one plane that contains that triangle, and every triangle is contained in some plane. If the entire geometry is only the Euclidean plane, there is only one plane and all triangles are contained in it; however, in higher-dimensional Euclidean spaces, this is no longer true. This article is about triangles in Euclidean geometry, and in particular, the Euclidean plane, except where otherwise noted. Types of triangle The terminology for categorizing triangles is more than two thousand years old, having been defined on the very first page of Euclid's Elements. The names used for modern classification are eith ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Incidence Geometry
In mathematics, incidence geometry is the study of incidence structures. A geometric structure such as the Euclidean plane is a complicated object that involves concepts such as length, angles, continuity, betweenness, and incidence. An ''incidence structure'' is what is obtained when all other concepts are removed and all that remains is the data about which points lie on which lines. Even with this severe limitation, theorems can be proved and interesting facts emerge concerning this structure. Such fundamental results remain valid when additional concepts are added to form a richer geometry. It sometimes happens that authors blur the distinction between a study and the objects of that study, so it is not surprising to find that some authors refer to incidence structures as incidence geometries. Incidence structures arise naturally and have been studied in various areas of mathematics. Consequently, there are different terminologies to describe these objects. In graph theory they ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]