Sigma-approximation Of A Square Wave
In mathematics, σ-approximation adjusts a Fourier summation to greatly reduce the Gibbs phenomenon, which would otherwise occur at discontinuities. A σ-approximated summation for a series of period ''T'' can be written as follows: s(\theta) = \frac a_0 + \sum_^ \operatorname \frac \cdot \left _ \cos \left( \frac \theta \right) + b_k \sin \left( \frac \theta \right) \right in terms of the normalized sinc function \operatorname x = \frac. The term \operatorname \frac is the Lanczos σ factor, which is responsible for eliminating most of the Gibbs phenomenon. It does not do so entirely, however, but one can square or even cube the expression to serially attenuate Gibbs phenomenon in the most extreme cases. See also * Lanczos resampling filtering and Lanczos resampling are two applications of a mathematical formula. It can be used as a low-pass filter or used to smoothly interpolate the value of a digital signal between its samples. In the latter case it maps each sample ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Sigma-approximation Of A Square Wave
In mathematics, σ-approximation adjusts a Fourier summation to greatly reduce the Gibbs phenomenon, which would otherwise occur at discontinuities. A σ-approximated summation for a series of period ''T'' can be written as follows: s(\theta) = \frac a_0 + \sum_^ \operatorname \frac \cdot \left _ \cos \left( \frac \theta \right) + b_k \sin \left( \frac \theta \right) \right in terms of the normalized sinc function \operatorname x = \frac. The term \operatorname \frac is the Lanczos σ factor, which is responsible for eliminating most of the Gibbs phenomenon. It does not do so entirely, however, but one can square or even cube the expression to serially attenuate Gibbs phenomenon in the most extreme cases. See also * Lanczos resampling filtering and Lanczos resampling are two applications of a mathematical formula. It can be used as a low-pass filter or used to smoothly interpolate the value of a digital signal between its samples. In the latter case it maps each sample ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fourier Series
A Fourier series () is a summation of harmonically related sinusoidal functions, also known as components or harmonics. The result of the summation is a periodic function whose functional form is determined by the choices of cycle length (or ''period''), the number of components, and their amplitudes and phase parameters. With appropriate choices, one cycle (or ''period'') of the summation can be made to approximate an arbitrary function in that interval (or the entire function if it too is periodic). The number of components is theoretically infinite, in which case the other parameters can be chosen to cause the series to converge to almost any ''well behaved'' periodic function (see Pathological and Dirichlet–Jordan test). The components of a particular function are determined by ''analysis'' techniques described in this article. Sometimes the components are known first, and the unknown function is ''synthesized'' by a Fourier series. Such is the case of a discrete-ti ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Gibbs Phenomenon
In mathematics, the Gibbs phenomenon, discovered by Available on-line at:National Chiao Tung University: Open Course Ware: Hewitt & Hewitt, 1979. and rediscovered by , is the oscillatory behavior of the Fourier series of a piecewise continuously differentiable periodic function around a jump discontinuity. The function's Nth partial Fourier series (formed by summing its N lowest constituent sinusoids) produces large peaks around the jump which overshoot and undershoot the function's actual values. This approximation error approaches a limit of about 9% of the jump as more sinusoids are used, though the infinite Fourier series sum does eventually converge almost everywhere except the point of discontinuity. The Gibbs phenomenon was observed by experimental physicists, but was believed to be due to imperfections in the measuring apparatus, and it is one cause of ringing artifacts in signal processing. Description The Gibbs phenomenon involves both the fact that Fourier su ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Discontinuity (mathematics)
Continuous functions are of utmost importance in mathematics, functions and applications. However, not all Function (mathematics), functions are Continuous function, continuous. If a function is not continuous at a point in its Domain of a function, domain, one says that it has a discontinuity there. The Set theory, set of all points of discontinuity of a function may be a discrete set, a dense set, or even the entire domain of the function. This article describes the classification of discontinuities in the simplest case of functions of a single Real number, real Variable-sweep wing, variable taking real values. The Oscillation (mathematics), oscillation of a function at a point quantifies these discontinuities as follows: * in a removable discontinuity, the distance that the value of the function is off by is the oscillation; * in a jump discontinuity, the size of the jump is the oscillation (assuming that the value ''at'' the point lies between these limits of the two sides); * i ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Sinc Function
In mathematics, physics and engineering, the sinc function, denoted by , has two forms, normalized and unnormalized.. In mathematics, the historical unnormalized sinc function is defined for by \operatornamex = \frac. Alternatively, the unnormalized sinc function is often called the sampling function, indicated as Sa(''x''). In digital signal processing and information theory, the normalized sinc function is commonly defined for by \operatornamex = \frac. In either case, the value at is defined to be the limiting value \operatorname0 := \lim_\frac = 1 for all real . The normalization causes the definite integral of the function over the real numbers to equal 1 (whereas the same integral of the unnormalized sinc function has a value of ). As a further useful property, the zeros of the normalized sinc function are the nonzero integer values of . The normalized sinc function is the Fourier transform of the rectangular function with no scaling. It is used in the concep ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lanczos Resampling
filtering and Lanczos resampling are two applications of a mathematical formula. It can be used as a low-pass filter or used to smoothly interpolate the value of a digital signal between its samples. In the latter case it maps each sample of the given signal to a translated and scaled copy of the Lanczos kernel, which is a sinc function windowed by the central lobe of a second, longer, sinc function. The sum of these translated and scaled kernels is then evaluated at the desired points. Lanczos resampling is typically used to increase the sampling rate of a digital signal, or to shift it by a fraction of the sampling interval. It is often used also for multivariate interpolation, for example to resize or rotate a digital image. It has been considered the "best compromise" among several simple filters for this purpose. The filter is named after its inventor, Cornelius Lanczos (). Definition Lanczos kernel The effect of each input sample on the interpolated values ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |