Set Theory Of The Real Line
   HOME
*





Set Theory Of The Real Line
Set theory of the real line is an area of mathematics concerned with the application of set theory to aspects of the real numbers. For example, one knows that all countable sets of reals are null, i.e. have Lebesgue measure 0; one might therefore ask the least possible size of a set which is not Lebesgue null. This invariant is called the uniformity of the ideal of null sets, denoted non(\mathcal). There are many such invariants associated with this and other ideals, e.g. the ideal of meagre sets, plus more which do not have a characterisation in terms of ideals. If the continuum hypothesis (CH) holds, then all such invariants are equal to \aleph_1, the least uncountable cardinal. For example, we know non(\mathcal) is uncountable, but being the size of some set of reals under CH it can be at most \aleph_1. On the other hand, if one assumes Martin's Axiom (MA) all common invariants are "big", that is equal to \mathfrak, the cardinality of the continuum. Martin's Axiom is co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Martin's Axiom
In the mathematical field of set theory, Martin's axiom, introduced by Donald A. Martin and Robert M. Solovay, is a statement that is independent of the usual axioms of ZFC set theory. It is implied by the continuum hypothesis, but it is consistent with ZFC and the negation of the continuum hypothesis. Informally, it says that all cardinals less than the cardinality of the continuum, \mathfrak c, behave roughly like \aleph_0. The intuition behind this can be understood by studying the proof of the Rasiowa–Sikorski lemma. It is a principle that is used to control certain forcing arguments. Statement For any cardinal 𝛋, we define a statement, denoted by MA(𝛋): For any partial order ''P'' satisfying the countable chain condition (hereafter ccc) and any family ''D'' of dense sets in ''P'' such that '', D, '' ≤ 𝛋, there is a filter ''F'' on ''P'' such that ''F'' ∩ ''d'' is non-empty for every ''d'' in ''D''. \operatorname(\aleph_0) is simply true — this is known ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cardinal Invariant
In mathematics, a cardinal function (or cardinal invariant) is a function that returns cardinal numbers. Cardinal functions in set theory * The most frequently used cardinal function is a function that assigns to a set ''A'' its cardinality, denoted by ,  ''A'' , . * Aleph numbers and beth numbers can both be seen as cardinal functions defined on ordinal numbers. * Cardinal arithmetic operations are examples of functions from cardinal numbers (or pairs of them) to cardinal numbers. * Cardinal characteristics of a (proper) ideal ''I'' of subsets of ''X'' are: :(I)=\min\. ::The "additivity" of ''I'' is the smallest number of sets from ''I'' whose union is not in ''I'' any more. As any ideal is closed under finite unions, this number is always at least \aleph_0; if ''I'' is a σ-ideal, then \operatorname(I) \ge \aleph_1. :\operatorname(I)=\min\. :: The "covering number" of ''I'' is the smallest number of sets from ''I'' whose union is all of ''X''. As ''X'' itself ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cichoń's Diagram
In set theory, Cichoń's diagram or Cichon's diagram is a table of 10 infinite cardinal numbers related to the set theory of the reals displaying the provable relations between these Cardinal characteristic of the continuum, cardinal characteristics of the continuum. All these cardinals are greater than or equal to \aleph_1, the smallest uncountable cardinal, and they are bounded above by 2^, the cardinality of the continuum. Four cardinals describe properties of the ideal (order theory), ideal of sets of Lebesgue measure, measure zero; four more describe the corresponding properties of the ideal of meagre set, meager sets (first category sets). Definitions Let ''I'' be an ideal (set theory), ideal of a fixed infinite set ''X'', containing all finite subsets of ''X''. We define the following "Cardinal function, cardinal coefficients" of ''I'': *\operatorname(I)=\min\. ::The "additivity" of ''I'' is the smallest number of sets from ''I'' whose union is not in ''I'' any more. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Saharon Shelah
Saharon Shelah ( he, שהרן שלח; born July 3, 1945) is an Israeli mathematician. He is a professor of mathematics at the Hebrew University of Jerusalem and Rutgers University in New Jersey. Biography Shelah was born in Jerusalem on July 3, 1945. He is the son of the Israeli poet and political activist Yonatan Ratosh. He received his PhD for his work on stable theories in 1969 from the Hebrew University. Shelah is married to Yael, and has three children. His brother, magistrate judge Hamman Shelah was murdered along with his wife and daughter by an Egyptian soldier in the Ras Burqa massacre in 1985. Shelah planned to be a scientist while at primary school, but initially was attracted to physics and biology, not mathematics. Later he found mathematical beauty in studying geometry: He said, "But when I reached the ninth grade I began studying geometry and my eyes opened to that beauty—a system of demonstration and theorems based on a very small number of axioms which impr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Union (set Theory)
In set theory, the union (denoted by ∪) of a collection of sets is the set of all elements in the collection. It is one of the fundamental operations through which sets can be combined and related to each other. A refers to a union of zero (0) sets and it is by definition equal to the empty set. For explanation of the symbols used in this article, refer to the table of mathematical symbols. Union of two sets The union of two sets ''A'' and ''B'' is the set of elements which are in ''A'', in ''B'', or in both ''A'' and ''B''. In set-builder notation, :A \cup B = \. For example, if ''A'' = and ''B'' = then ''A'' ∪ ''B'' = . A more elaborate example (involving two infinite sets) is: : ''A'' = : ''B'' = : A \cup B = \ As another example, the number 9 is ''not'' contained in the union of the set of prime numbers and the set of even numbers , because 9 is neither prime nor even. Sets cannot have duplicate elements, so the union of the sets and is . Multip ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Measure (mathematics)
In mathematics, the concept of a measure is a generalization and formalization of geometrical measures ( length, area, volume) and other common notions, such as mass and probability of events. These seemingly distinct concepts have many similarities and can often be treated together in a single mathematical context. Measures are foundational in probability theory, integration theory, and can be generalized to assume negative values, as with electrical charge. Far-reaching generalizations (such as spectral measures and projection-valued measures) of measure are widely used in quantum physics and physics in general. The intuition behind this concept dates back to ancient Greece, when Archimedes tried to calculate the area of a circle. But it was not until the late 19th and early 20th centuries that measure theory became a branch of mathematics. The foundations of modern measure theory were laid in the works of Émile Borel, Henri Lebesgue, Nikolai Luzin, Johann Radon, Const ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Countable Chain Condition
In order theory, a partially ordered set ''X'' is said to satisfy the countable chain condition, or to be ccc, if every strong antichain in ''X'' is countable. Overview There are really two conditions: the ''upwards'' and ''downwards'' countable chain conditions. These are not equivalent. The countable chain condition means the downwards countable chain condition, in other words no two elements have a common lower bound. This is called the "countable chain condition" rather than the more logical term "countable antichain condition" for historical reasons related to certain chains of open sets in topological spaces and chains in complete Boolean algebras, where chain conditions sometimes happen to be equivalent to antichain conditions. For example, if κ is a cardinal, then in a complete Boolean algebra every antichain has size less than κ if and only if there is no descending κ-sequence of elements, so chain conditions are equivalent to antichain conditions. Partial orders and s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Forcing (mathematics)
In the mathematical discipline of set theory, forcing is a technique for proving consistency and independence results. It was first used by Paul Cohen in 1963, to prove the independence of the axiom of choice and the continuum hypothesis from Zermelo–Fraenkel set theory. Forcing has been considerably reworked and simplified in the following years, and has since served as a powerful technique, both in set theory and in areas of mathematical logic such as recursion theory. Descriptive set theory uses the notions of forcing from both recursion theory and set theory. Forcing has also been used in model theory, but it is common in model theory to define genericity directly without mention of forcing. Intuition Intuitively, forcing consists of expanding the set theoretical universe V to a larger universe V^ . In this bigger universe, for example, one might have many new real numbers, identified with subsets of the set \mathbb of natural numbers, that were not there in the old ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Cardinality Of The Continuum
In set theory, the cardinality of the continuum is the cardinality or "size" of the set of real numbers \mathbb R, sometimes called the continuum. It is an infinite cardinal number and is denoted by \mathfrak c (lowercase fraktur "c") or , \mathbb R, . The real numbers \mathbb R are more numerous than the natural numbers \mathbb N. Moreover, \mathbb R has the same number of elements as the power set of \mathbb N. Symbolically, if the cardinality of \mathbb N is denoted as \aleph_0, the cardinality of the continuum is This was proven by Georg Cantor in his uncountability proof of 1874, part of his groundbreaking study of different infinities. The inequality was later stated more simply in his diagonal argument in 1891. Cantor defined cardinality in terms of bijective functions: two sets have the same cardinality if, and only if, there exists a bijective function between them. Between any two real numbers ''a''  \mathfrak c . Alternative explanation for 𝔠 = 2ℵ0 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Uncountable
In mathematics, an uncountable set (or uncountably infinite set) is an infinite set that contains too many elements to be countable. The uncountability of a set is closely related to its cardinal number: a set is uncountable if its cardinal number is larger than that of the set of all natural numbers. Characterizations There are many equivalent characterizations of uncountability. A set ''X'' is uncountable if and only if any of the following conditions hold: * There is no injective function (hence no bijection) from ''X'' to the set of natural numbers. * ''X'' is nonempty and for every ω-sequence of elements of ''X'', there exists at least one element of X not included in it. That is, ''X'' is nonempty and there is no surjective function from the natural numbers to ''X''. * The cardinality of ''X'' is neither finite nor equal to \aleph_0 (aleph-null, the cardinality of the natural numbers). * The set ''X'' has cardinality strictly greater than \aleph_0. The first three of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]