Serre Spectral Sequence
   HOME
*





Serre Spectral Sequence
In mathematics, the Serre spectral sequence (sometimes Leray–Serre spectral sequence to acknowledge earlier work of Jean Leray in the Leray spectral sequence) is an important tool in algebraic topology. It expresses, in the language of homological algebra, the singular (co)homology of the total space ''X'' of a (Serre) fibration in terms of the (co)homology of the base space ''B'' and the fiber ''F''. The result is due to Jean-Pierre Serre in his doctoral dissertation. Cohomology spectral sequence Let f\colon X\to B be a Serre fibration of topological spaces, and let ''F'' be the (path-connected) fiber. The Serre cohomology spectral sequence is the following: : E_2^ = H^p(B, H^q(F)) \Rightarrow H^(X). Here, at least under standard simplifying conditions, the coefficient group in the E_2-term is the ''q''-th integral cohomology group of ''F'', and the outer group is the singular cohomology of ''B'' with coefficients in that group. Strictly speaking, what is meant is cohomology ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Exact Sequence
An exact sequence is a sequence of morphisms between objects (for example, groups, rings, modules, and, more generally, objects of an abelian category) such that the image of one morphism equals the kernel of the next. Definition In the context of group theory, a sequence :G_0\;\xrightarrow\; G_1 \;\xrightarrow\; G_2 \;\xrightarrow\; \cdots \;\xrightarrow\; G_n of groups and group homomorphisms is said to be exact at G_i if \operatorname(f_i)=\ker(f_). The sequence is called exact if it is exact at each G_i for all 1\leq i, i.e., if the image of each homomorphism is equal to the kernel of the next. The sequence of groups and homomorphisms may be either finite or infinite. A similar definition can be made for other s. For example, one could have an exact sequence of

Inventiones Mathematicae
''Inventiones Mathematicae'' is a mathematical journal published monthly by Springer Science+Business Media. It was established in 1966 and is regarded as one of the most prestigious mathematics journals in the world. The current managing editors are Camillo De Lellis (Institute for Advanced Study, Princeton) and Jean-Benoît Bost (University of Paris-Sud Paris-Sud University (French: ''Université Paris-Sud''), also known as University of Paris — XI (or as Université d'Orsay before 1971), was a French research university distributed among several campuses in the southern suburbs of Paris, in ...). Abstracting and indexing The journal is abstracted and indexed in: References External links *{{Official website, https://www.springer.com/journal/222 Mathematics journals Publications established in 1966 English-language journals Springer Science+Business Media academic journals Monthly journals ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Edwin Spanier
Edwin Henry Spanier (August 8, 1921 – October 11, 1996) was an American mathematician at the University of California at Berkeley, working in algebraic topology. He co-invented Spanier–Whitehead duality and Alexander–Spanier cohomology, and wrote what was for a long time the standard textbook on algebraic topology . Spanier attended the University of Minnesota, graduating in 1941. During World War II, he served in the United States Army Signal Corps. He received his Ph.D. degree from the University of Michigan in 1947 for the thesis ''Cohomology Theory for General Spaces'' written under the direction of Norman Steenrod. After spending a year as a research fellow at the Institute for Advanced Study in Princeton, New Jersey, in 1948 he was appointed to the faculty of the University of Chicago, and then a professor at UC Berkeley in 1959. He had 17 doctoral students, including Morris Hirsch and Elon Lages Lima. Publications * References * Retrieved on 2008-01-17 * Retriev ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Allen Hatcher
Allen, Allen's or Allens may refer to: Buildings * Allen Arena, an indoor arena at Lipscomb University in Nashville, Tennessee * Allen Center, a skyscraper complex in downtown Houston, Texas * Allen Fieldhouse, an indoor sports arena on the University of Kansas campus in Lawrence * Allen House (other) * Allen Power Plant (other) Businesses *Allen (brand), an American tool company *Allen's, an Australian brand of confectionery * Allens (law firm), an Australian law firm formerly known as Allens Arthur Robinson *Allen's (restaurant), a former hamburger joint and nightclub in Athens, Georgia, United States *Allen & Company LLC, a small, privately held investment bank *Allens of Mayfair, a butcher shop in London from 1830 to 2015 *Allens Boots, a retail store in Austin, Texas * Allens, Inc., a brand of canned vegetables based in Arkansas, US, now owned by Del Monte Foods * Allen's department store, a.k.a. Allen's, George Allen, Inc., Philadelphia, USA People * Allen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Gysin Sequence
In the field of mathematics known as algebraic topology, the Gysin sequence is a long exact sequence which relates the cohomology classes of the base space, the fiber and the total space of a sphere bundle. The Gysin sequence is a useful tool for calculating the cohomology rings given the Euler class of the sphere bundle and vice versa. It was introduced by , and is generalized by the Serre spectral sequence. Definition Consider a fiber-oriented sphere bundle with total space ''E'', base space ''M'', fiber ''S''''k'' and projection map \pi: S^k \hookrightarrow E \stackrel M. Any such bundle defines a degree ''k'' + 1 cohomology class ''e'' called the Euler class of the bundle. De Rham cohomology Discussion of the sequence is clearest with de Rham cohomology. There cohomology classes are represented by differential forms, so that ''e'' can be represented by a (''k'' + 1)-form. The projection map \pi induces a map in cohomology H^\ast called its pullbac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hopf Fibration
In the mathematical field of differential topology, the Hopf fibration (also known as the Hopf bundle or Hopf map) describes a 3-sphere (a hypersphere in four-dimensional space) in terms of circles and an ordinary sphere. Discovered by Heinz Hopf in 1931, it is an influential early example of a fiber bundle. Technically, Hopf found a many-to-one continuous function (or "map") from the -sphere onto the -sphere such that each distinct ''point'' of the -sphere is mapped from a distinct great circle of the -sphere . Thus the -sphere is composed of fibers, where each fiber is a circle — one for each point of the -sphere. This fiber bundle structure is denoted :S^1 \hookrightarrow S^3 \xrightarrow S^2, meaning that the fiber space (a circle) is embedded in the total space (the -sphere), and (Hopf's map) projects onto the base space (the ordinary -sphere). The Hopf fibration, like any fiber bundle, has the important property that it is locally a product space. However it is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Homotopy Group
In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group, denoted \pi_1(X), which records information about loops in a space. Intuitively, homotopy groups record information about the basic shape, or ''holes'', of a topological space. To define the ''n''-th homotopy group, the base-point-preserving maps from an ''n''-dimensional sphere (with base point) into a given space (with base point) are collected into equivalence classes, called homotopy classes. Two mappings are homotopic if one can be continuously deformed into the other. These homotopy classes form a group, called the ''n''-th homotopy group, \pi_n(X), of the given space ''X'' with base point. Topological spaces with differing homotopy groups are never equivalent ( homeomorphic), but topological spaces that homeomorphic have the same homotopy groups. The notion of homotopy of paths was introduced by Camille Jordan. I ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hurewicz Theorem
In mathematics, the Hurewicz theorem is a basic result of algebraic topology, connecting homotopy theory with homology theory via a map known as the Hurewicz homomorphism. The theorem is named after Witold Hurewicz, and generalizes earlier results of Henri Poincaré. Statement of the theorems The Hurewicz theorems are a key link between homotopy groups and homology groups. Absolute version For any path-connected space ''X'' and positive integer ''n'' there exists a group homomorphism :h_* \colon \pi_n(X) \to H_n(X), called the Hurewicz homomorphism, from the ''n''-th homotopy group to the ''n''-th homology group (with integer coefficients). It is given in the following way: choose a canonical generator u_n \in H_n(S^n), then a homotopy class of maps f \in \pi_n(X) is taken to f_*(u_n) \in H_n(X). The Hurewicz theorem states cases in which the Hurewitz homomorphism is an isomorphism. * For n\ge 2, if ''X'' is (n-1)-connected (that is: \pi_i(X)= 0 for all ''i''2 there exists ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Eilenberg–MacLane Space
In mathematics, specifically algebraic topology, an Eilenberg–MacLane spaceSaunders Mac Lane originally spelt his name "MacLane" (without a space), and co-published the papers establishing the notion of Eilenberg–MacLane spaces under this name. (See e.g. ) In this context it is therefore conventional to write the name without a space. is a topological space with a single nontrivial homotopy group. Let ''G'' be a group and ''n'' a positive integer. A connected topological space ''X'' is called an Eilenberg–MacLane space of type K(G,n), if it has ''n''-th homotopy group \pi_n(X) isomorphic to ''G'' and all other homotopy groups trivial. If n > 1 then ''G'' must be abelian. Such a space exists, is a CW-complex, and is unique up to a weak homotopy equivalence, therefore any such space is often just called K(G,n). The name is derived from Samuel Eilenberg and Saunders Mac Lane, who introduced such spaces in the late 1940s. As such, an Eilenberg–MacLane space is a special k ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Path Space Fibration
In algebraic topology, the path space fibration over a based space (X, *) is a fibration of the form :\Omega X \hookrightarrow PX \overset\to X where *PX is the path space of ''X''; i.e., PX = \operatorname(I, X) = \ equipped with the compact-open topology. *\Omega X is the fiber of \chi \mapsto \chi(1) over the base point of ''X''; thus it is the loop space of ''X''. The space X^I consists of all maps from ''I'' to ''X'' that may not preserve the base points; it is called the free path space of ''X'' and the fibration X^I \to X given by, say, \chi \mapsto \chi(1), is called the free path space fibration. The path space fibration can be understood to be dual to the mapping cone. The reduced fibration is called the mapping fiber or, equivalently, the homotopy fiber. Mapping path space If f\colon X\to Y is any map, then the mapping path space P_f of f is the pullback of the fibration Y^I \to Y, \, \chi \mapsto \chi(1) along f. (A mapping path space satisfies the universal propert ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

K3 Surface
In mathematics, a complex analytic K3 surface is a compact connected complex manifold of dimension 2 with trivial canonical bundle and irregularity zero. An (algebraic) K3 surface over any field means a smooth proper geometrically connected algebraic surface that satisfies the same conditions. In the Enriques–Kodaira classification of surfaces, K3 surfaces form one of the four classes of minimal surfaces of Kodaira dimension zero. A simple example is the Fermat quartic surface :x^4+y^4+z^4+w^4=0 in complex projective 3-space. Together with two-dimensional compact complex tori, K3 surfaces are the Calabi–Yau manifolds (and also the hyperkähler manifolds) of dimension two. As such, they are at the center of the classification of algebraic surfaces, between the positively curved del Pezzo surfaces (which are easy to classify) and the negatively curved surfaces of general type (which are essentially unclassifiable). K3 surfaces can be considered the simplest algebraic varieti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]