HOME





Semigroup With Involution
In mathematics, particularly in abstract algebra, a semigroup with involution or a *-semigroup is a semigroup equipped with an involutive anti-automorphism, which—roughly speaking—brings it closer to a group because this involution, considered as unary operator, exhibits certain fundamental properties of the operation of taking the inverse in a group: * Uniqueness * Double application "cancelling itself out". * The same interaction law with the binary operation as in the case of the group inverse. It is thus not a surprise that any group is a semigroup with involution. However, there are significant natural examples of semigroups with involution that are not groups. An example from linear algebra is a set of real-valued n-by-n square matrices with the matrix-transpose as the involution. The map which sends a matrix to its transpose is an involution because the transpose is well defined for any matrix and obeys the law , which has the same form of interaction with multi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Concatenation
In formal language theory and computer programming, string concatenation is the operation of joining character strings end-to-end. For example, the concatenation of "snow" and "ball" is "snowball". In certain formalizations of concatenation theory, also called string theory, string concatenation is a primitive notion. Syntax In many programming languages, string concatenation is a binary infix operator, and in some it is written without an operator. This is implemented in different ways: * Overloading the plus sign + Example from C#: "Hello, " + "World" has the value "Hello, World". * Dedicated operator, such as . in PHP, & in Visual Basic, and , , in SQL. This has the advantage over reusing + that it allows implicit type conversion to string. * string literal concatenation, which means that adjacent strings are concatenated without any operator. Example from C: "Hello, " "World" has the value "Hello, World". In many scientific publications or standards the con ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Commutative
In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Perhaps most familiar as a property of arithmetic, e.g. or , the property can also be used in more advanced settings. The name is needed because there are operations, such as division (mathematics), division and subtraction, that do not have it (for example, ); such operations are ''not'' commutative, and so are referred to as noncommutative operations. The idea that simple operations, such as the multiplication (mathematics), multiplication and addition of numbers, are commutative was for many centuries implicitly assumed. Thus, this property was not named until the 19th century, when new algebraic structures started to be studied. Definition A binary operation * on a Set (mathematics), set ''S'' is ''commutative'' if x * y = y * x for all x,y \in S. An operat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Harold Scott MacDonald Coxeter
Harold Scott MacDonald "Donald" Coxeter (9 February 1907 – 31 March 2003) was a British-Canadian geometer and mathematician. He is regarded as one of the greatest geometers of the 20th century. Coxeter was born in England and educated at the University of Cambridge, with student visits to Princeton University. He worked for 60 years at the University of Toronto in Canada, from 1936 until his retirement in 1996, becoming a full professor there in 1948. His many honours included membership in the Royal Society of Canada, the Royal Society, and the Order of Canada. He was an author of 12 books, including '' The Fifty-Nine Icosahedra'' (1938) and '' Regular Polytopes'' (1947). Many concepts in geometry and group theory are named after him, including the Coxeter graph, Coxeter groups, Coxeter's loxodromic sequence of tangent circles, Coxeter–Dynkin diagrams, and the Todd–Coxeter algorithm. Biography Coxeter was born in Kensington, England, to Harold Samuel Coxete ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Antidistributive
In mathematics, the distributive property of binary operations is a generalization of the distributive law, which asserts that the equality x \cdot (y + z) = x \cdot y + x \cdot z is always true in elementary algebra. For example, in elementary arithmetic, one has 2 \cdot (1 + 3) = (2 \cdot 1) + (2 \cdot 3). Therefore, one would say that multiplication ''distributes'' over addition. This basic property of numbers is part of the definition of most algebraic structures that have two operations called addition and multiplication, such as complex numbers, polynomials, matrices, rings, and fields. It is also encountered in Boolean algebra and mathematical logic, where each of the logical and (denoted \,\land\,) and the logical or (denoted \,\lor\,) distributes over the other. Definition Given a set S and two binary operators \,*\, and \,+\, on S, *the operation \,*\, is over (or with respect to) \,+\, if, given any elements x, y, \text z of S, x * (y + z) = (x * y) + (x * z); *t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


U-semigroup
In mathematics, the concept of an inverse element generalises the concepts of opposite () and reciprocal () of numbers. Given an operation denoted here , and an identity element denoted , if , one says that is a left inverse of , and that is a right inverse of . (An identity element is an element such that and for all and for which the left-hand sides are defined.) When the operation is associative, if an element has both a left inverse and a right inverse, then these two inverses are equal and unique; they are called the ''inverse element'' or simply the ''inverse''. Often an adjective is added for specifying the operation, such as in additive inverse, multiplicative inverse, and functional inverse. In this case (associative operation), an invertible element is an element that has an inverse. In a ring, an ''invertible element'', also called a unit, is an element that is invertible under multiplication (this is not ambiguous, as every element is invertible under additi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Unary Operation
In mathematics, a unary operation is an operation with only one operand, i.e. a single input. This is in contrast to ''binary operations'', which use two operands. An example is any function , where is a set; the function is a unary operation on . Common notations are prefix notation (e.g. ¬, −), postfix notation (e.g. factorial ), functional notation (e.g. or ), and superscripts (e.g. transpose ). Other notations exist as well, for example, in the case of the square root, a horizontal bar extending the square root sign over the argument can indicate the extent of the argument. Examples Absolute value Obtaining the absolute value of a number is a unary operation. This function is defined as , n, = \begin n, & \mbox n\geq0 \\ -n, & \mbox n<0 \end where , n, is the absolute value of n.


Negation





Semiheap
In abstract algebra, a semiheap is an algebraic structure consisting of a non-empty set ''H'' with a ternary operation denoted ,y,z\in H that satisfies a modified associativity property: \forall a,b,c,d,e \in H \quad a,b,cd,e] = ,[d,c,be= [a,b,[c,d,e">,c,b">,[d,c,b<_a>e.html" ;"title=",c,b.html" ;"title=",[d,c,b">,[d,c,be">,c,b.html" ;"title=",[d,c,b">,[d,c,be= [a,b,[c,d,e. A biunitary element ''h'' of a semiheap satisfies [''h'',''h'',''k''] = ''k'' = [''k'',''h'',''h''] for every ''k'' in ''H''. A heap is a semiheap in which every element is biunitary. It can be thought of as a group_(mathematics), group with the identity element "forgotten". The term ''heap'' is derived from груда, Russian for "heap", "pile", or "stack". Anton Sushkevich used the term in his ''Theory of Generalized Groups'' (1937) which influenced Viktor Wagner, promulgator of semiheaps, heaps, and generalized heaps.C.D. Hollings & M.V. Lawson (2017) ''Wagner's Theory of Generalised Heap ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Viktor Wagner
Viktor Vladimirovich Wagner, also Vagner () (4 November 1908 – 15 August 1981) was a Russian mathematician, best known for his work in differential geometry and on semigroups. Wagner was born in Saratov and studied at Moscow State University, where Veniamin Kagan was his advisor. He became the first geometry chair at Saratov State University. He received the Lobachevsky Medal in 1937. Wagner was also awarded "the Order of Lenin, the Order of the Red Banner, and the title of Honoured Scientist RSFSR. Moreover, he was also accorded that rarest of privileges in the USSR: permission to travel abroad." Wagner is credited with noting that the collection of partial transformations on a set ''X'' forms a semigroup \mathcal_X which is a subsemigroup of the semigroup \mathcal_X of binary relations on the same set ''X'', where the semigroup operation is composition of relations. "This simple unifying observation, which is nevertheless an important psychological hurdle, is attributed ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Composition Of Relations
In the mathematics of binary relations, the composition of relations is the forming of a new binary relation from two given binary relations ''R'' and ''S''. In the calculus of relations, the composition of relations is called relative multiplication, and its result is called a relative product. Function composition is the special case of composition of relations where all relations involved are functions. The word uncle indicates a compound relation: for a person to be an uncle, he must be the brother of a parent. In algebraic logic it is said that the relation of Uncle (x U z) is the composition of relations "is a brother of" (x B y) and "is a parent of" (y P z). U = BP \quad \text \quad xUz \text \exists y\ xByPz. Beginning with Augustus De Morgan, the traditional form of reasoning by syllogism has been subsumed by relational logical expressions and their composition. Definition If R \subseteq X \times Y and S \subseteq Y \times Z are two binary relations, then their compo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Converse Relation
In mathematics, the converse of a binary relation is the relation that occurs when the order of the elements is switched in the relation. For example, the converse of the relation 'child of' is the relation 'parent of'. In formal terms, if X and Y are sets and L \subseteq X \times Y is a relation from X to Y, then L^ is the relation defined so that yL^x if and only if xLy. In set-builder notation, :L^ = \. Since a relation may be represented by a logical matrix, and the logical matrix of the converse relation is the transpose of the original, the converse relation is also called the transpose relation. It has also been called the opposite or dual of the original relation, the inverse of the original relation,Gerard O'Regan (2016): ''Guide to Discrete Mathematics: An Accessible Introduction to the History, Theory, Logic and Applications'' or the reciprocal L^ of the relation L. Other notations for the converse relation include L^, L^, \breve, L^, or L^. The notati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Binary Relation
In mathematics, a binary relation associates some elements of one Set (mathematics), set called the ''domain'' with some elements of another set called the ''codomain''. Precisely, a binary relation over sets X and Y is a set of ordered pairs (x, y), where x is an element of X and y is an element of Y. It encodes the common concept of relation: an element x is ''related'' to an element y, if and only if the pair (x, y) belongs to the set of ordered pairs that defines the binary relation. An example of a binary relation is the "divides" relation over the set of prime numbers \mathbb and the set of integers \mathbb, in which each prime p is related to each integer z that is a Divisibility, multiple of p, but not to an integer that is not a Multiple (mathematics), multiple of p. In this relation, for instance, the prime number 2 is related to numbers such as -4, 0, 6, 10, but not to 1 or 9, just as the prime number 3 is related to 0, 6, and 9, but not to 4 or 13. Binary relations ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]