Selection (genetic Algorithm)
Selection is the stage of a genetic algorithm in which individual genomes are chosen from a population for later breeding (using the crossover operator). A generic selection procedure may be implemented as follows: #The fitness function is evaluated for each individual, providing fitness values, which are then normalized. Normalization means dividing the fitness value of each individual by the sum of all fitness values, so that the sum of all resulting fitness values equals 1. #Accumulated normalized fitness values are computed: the accumulated fitness value of an individual is the sum of its own fitness value plus the fitness values of all the previous individuals; the accumulated fitness of the last individual should be 1, otherwise something went wrong in the normalization step. #A random number ''R'' between 0 and 1 is chosen. #The selected individual is the first one whose accumulated normalized value is greater than or equal to ''R''. For many problems the above algorithm m ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Genetic Algorithm
In computer science and operations research, a genetic algorithm (GA) is a metaheuristic inspired by the process of natural selection that belongs to the larger class of evolutionary algorithms (EA). Genetic algorithms are commonly used to generate high-quality solutions to optimization and search problems by relying on biologically inspired operators such as mutation, crossover and selection. Some examples of GA applications include optimizing decision trees for better performance, solving sudoku puzzles, hyperparameter optimization, etc. Methodology Optimization problems In a genetic algorithm, a population of candidate solutions (called individuals, creatures, organisms, or phenotypes) to an optimization problem is evolved toward better solutions. Each candidate solution has a set of properties (its chromosomes or genotype) which can be mutated and altered; traditionally, solutions are represented in binary as strings of 0s and 1s, but other encodings are also possible. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Crossover (genetic Algorithm)
In genetic algorithms and evolutionary computation, crossover, also called recombination, is a genetic operator used to combine the genetic information of two parents to generate new offspring. It is one way to stochastically generate new solutions from an existing population, and is analogous to the crossover that happens during sexual reproduction in biology. Solutions can also be generated by cloning an existing solution, which is analogous to asexual reproduction. Newly generated solutions are typically mutated before being added to the population. Different algorithms in evolutionary computation may use different data structures to store genetic information, and each genetic representation can be recombined with different crossover operators. Typical data structures that can be recombined with crossover are bit arrays, vectors of real numbers, or trees. Examples Traditional genetic algorithms store genetic information in a chromosome represented by a bit array. Crossover m ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fitness Function
{{no footnotes, date=May 2015 A fitness function is a particular type of objective function that is used to summarise, as a single figure of merit, how close a given design solution is to achieving the set aims. Fitness functions are used in genetic programming and genetic algorithms to guide simulations towards optimal design solutions. Genetic programming and algorithms In particular, in the fields of genetic programming and genetic algorithms, each design solution is commonly represented as a string of numbers (referred to as a chromosome). After each round of testing, or simulation, the idea is to delete the ''n'' worst design solutions, and to breed ''n'' new ones from the best design solutions. Each design solution, therefore, needs to be awarded a figure of merit, to indicate how close it came to meeting the overall specification, and this is generated by applying the fitness function to the test, or simulation, results obtained from that solution. The reason that genetic al ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fitness Proportionate Selection
Fitness proportionate selection, also known as roulette wheel selection, is a genetic operator used in genetic algorithms for selecting potentially useful solutions for recombination. In fitness proportionate selection, as in all selection methods, the fitness function assigns a fitness to possible solutions or chromosomes. This fitness level is used to associate a probability of selection with each individual chromosome. If f_i is the fitness of individual i in the population, its probability of being selected is : p_i = \frac, where N is the number of individuals in the population. This could be imagined similar to a Roulette wheel in a casino. Usually a proportion of the wheel is assigned to each of the possible selections based on their fitness value. This could be achieved by dividing the fitness of a selection by the total fitness of all the selections, thereby normalizing them to 1. Then a random selection is made similar to how the roulette wheel is rotated. While candi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Stochastic Universal Sampling
Stochastic universal sampling (SUS) is a technique used in genetic algorithms for selecting potentially useful solutions for recombination. It was introduced by James Baker. SUS is a development of fitness proportionate selection (FPS) which exhibits no bias and minimal spread. Where FPS chooses several solutions from the population by repeated random sampling, SUS uses a single random value to sample all of the solutions by choosing them at evenly spaced intervals. This gives weaker members of the population (according to their fitness) a chance to be chosen. FPS can have bad performance when a member of the population has a really large fitness in comparison with other members. Using a comb-like ruler, SUS starts from a small random number, and chooses the next candidates from the rest of population remaining, not allowing the fittest members to saturate the candidate space. Described as an algorithm, pseudocode for SUS looks like: SUS(''Population'', ''N'') ''F'' := to ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Tournament Selection
Tournament selection is a method of selecting an individual from a population of individuals in a genetic algorithm. Tournament selection involves running several "tournaments" among a few individuals (or "chromosomes") chosen at random from the population. The winner of each tournament (the one with the best fitness) is selected for crossover. ''Selection pressure'', a probabilistic measure of a chromosome's likelihood of participation in the tournament based on the participant selection pool size, is easily adjusted by changing the tournament size, the reason is that if the tournament size is larger, weak individuals have a smaller chance to be selected, because, if a weak individual is selected to be in a tournament, there is a higher probability that a stronger individual is also in that tournament. The tournament selection method may be described in pseudo code: choose k (the tournament size) individuals from the population at random choose the best individual from the tou ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Truncation Selection
In animal and plant breeding, truncation selection is a standard method in selective breeding in selecting animals to be bred for the next generation. Animals are ranked by their phenotypic value on some trait such as milk production, and the top percentage is reproduced. The effects of truncation selection for a continuous trait can be modeled by the standard breeder's equation by using heritability and truncated normal distributions. On a binary trait, it can be modeled easily using the liability threshold model. It is considered an easy and efficient method of breeding. Computer science In computer science, truncation selection is a selection method used in genetic algorithm In computer science and operations research, a genetic algorithm (GA) is a metaheuristic inspired by the process of natural selection that belongs to the larger class of evolutionary algorithms (EA). Genetic algorithms are commonly used to gene ...s to select potential candidate solutions for recombin ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fitness Proportionate Selection
Fitness proportionate selection, also known as roulette wheel selection, is a genetic operator used in genetic algorithms for selecting potentially useful solutions for recombination. In fitness proportionate selection, as in all selection methods, the fitness function assigns a fitness to possible solutions or chromosomes. This fitness level is used to associate a probability of selection with each individual chromosome. If f_i is the fitness of individual i in the population, its probability of being selected is : p_i = \frac, where N is the number of individuals in the population. This could be imagined similar to a Roulette wheel in a casino. Usually a proportion of the wheel is assigned to each of the possible selections based on their fitness value. This could be achieved by dividing the fitness of a selection by the total fitness of all the selections, thereby normalizing them to 1. Then a random selection is made similar to how the roulette wheel is rotated. While candi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Tournament Selection
Tournament selection is a method of selecting an individual from a population of individuals in a genetic algorithm. Tournament selection involves running several "tournaments" among a few individuals (or "chromosomes") chosen at random from the population. The winner of each tournament (the one with the best fitness) is selected for crossover. ''Selection pressure'', a probabilistic measure of a chromosome's likelihood of participation in the tournament based on the participant selection pool size, is easily adjusted by changing the tournament size, the reason is that if the tournament size is larger, weak individuals have a smaller chance to be selected, because, if a weak individual is selected to be in a tournament, there is a higher probability that a stronger individual is also in that tournament. The tournament selection method may be described in pseudo code: choose k (the tournament size) individuals from the population at random choose the best individual from the tou ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fitness Proportionate Selection
Fitness proportionate selection, also known as roulette wheel selection, is a genetic operator used in genetic algorithms for selecting potentially useful solutions for recombination. In fitness proportionate selection, as in all selection methods, the fitness function assigns a fitness to possible solutions or chromosomes. This fitness level is used to associate a probability of selection with each individual chromosome. If f_i is the fitness of individual i in the population, its probability of being selected is : p_i = \frac, where N is the number of individuals in the population. This could be imagined similar to a Roulette wheel in a casino. Usually a proportion of the wheel is assigned to each of the possible selections based on their fitness value. This could be achieved by dividing the fitness of a selection by the total fitness of all the selections, thereby normalizing them to 1. Then a random selection is made similar to how the roulette wheel is rotated. While candi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Stochastic Universal Sampling
Stochastic universal sampling (SUS) is a technique used in genetic algorithms for selecting potentially useful solutions for recombination. It was introduced by James Baker. SUS is a development of fitness proportionate selection (FPS) which exhibits no bias and minimal spread. Where FPS chooses several solutions from the population by repeated random sampling, SUS uses a single random value to sample all of the solutions by choosing them at evenly spaced intervals. This gives weaker members of the population (according to their fitness) a chance to be chosen. FPS can have bad performance when a member of the population has a really large fitness in comparison with other members. Using a comb-like ruler, SUS starts from a small random number, and chooses the next candidates from the rest of population remaining, not allowing the fittest members to saturate the candidate space. Described as an algorithm, pseudocode for SUS looks like: SUS(''Population'', ''N'') ''F'' := to ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Reward-based Selection
Reward-based selection is a technique used in evolutionary algorithms for selecting potentially useful solutions for recombination. The probability of being selected for an individual is proportional to the cumulative reward, obtained by the individual. The cumulative reward can be computed as a sum of the individual reward and the reward, inherited from parents. Description Reward-based selection can be used within Multi-armed bandit framework for Multi-objective optimization to obtain a better approximation of the Pareto front. The newborn a'^ and its parents receive a reward r^, if a'^ was selected for new population Q^, otherwise the reward is zero. Several reward definitions are possible: *1. r^=1, if the newborn individual a'^ was selected for new population Q^. *2. r^ = 1 - \frac \mbox a'^ \in Q^ , where rank(a'^) is the rank of newly inserted individual in the population of \mu individuals. Rank can be computed using a well-known non-dominated sorting procedure. *3. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |