HOME
*





Secondary Polynomials
In mathematics, the secondary polynomials \ associated with a sequence \ of polynomials orthogonal In mathematics, orthogonality is the generalization of the geometric notion of '' perpendicularity''. By extension, orthogonality is also used to refer to the separation of specific features of a system. The term also has specialized meanings in ... with respect to a density \rho(x) are defined by : q_n(x) = \int_\mathbb\! \frac \rho(t)\,dt. To see that the functions q_n(x) are indeed polynomials, consider the simple example of p_0(x)=x^3. Then, :\begin q_0(x) & = \int_\mathbb \! \frac \rho(t)\,dt \\ & = \int_\mathbb \! \frac \rho(t)\,dt \\ & = \int_\mathbb \! (t^2+tx+x^2)\rho(t)\,dt \\ & = \int_\mathbb \! t^2\rho(t)\,dt + x\int_\mathbb \! t\rho(t)\,dt + x^2\int_\mathbb \! \rho(t)\,dt \end which is a polynomial x provided that the three integrals in t (the moments of the density \rho) are convergent. See also * Secondary measure Polynomials {{algebra-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sequence
In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is called the ''length'' of the sequence. Unlike a set, the same elements can appear multiple times at different positions in a sequence, and unlike a set, the order does matter. Formally, a sequence can be defined as a function from natural numbers (the positions of elements in the sequence) to the elements at each position. The notion of a sequence can be generalized to an indexed family, defined as a function from an ''arbitrary'' index set. For example, (M, A, R, Y) is a sequence of letters with the letter 'M' first and 'Y' last. This sequence differs from (A, R, M, Y). Also, the sequence (1, 1, 2, 3, 5, 8), which contains the number 1 at two different positions, is a valid sequence. Sequences can be ''finite'', as in these examples, or ''infi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Polynomials
In mathematics, a polynomial is an expression (mathematics), expression consisting of indeterminate (variable), indeterminates (also called variable (mathematics), variables) and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An example of a polynomial of a single indeterminate is . An example with three indeterminates is . Polynomials appear in many areas of mathematics and science. For example, they are used to form polynomial equations, which encode a wide range of problems, from elementary word problem (mathematics education), word problems to complicated scientific problems; they are used to define polynomial functions, which appear in settings ranging from basic chemistry and physics to economics and social science; they are used in calculus and numerical analysis to approximate other functions. In advanced mathematics, polynomials are used to construct polynomial rings and algebraic variety ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Orthogonal Polynomials
In mathematics, an orthogonal polynomial sequence is a family of polynomials such that any two different polynomials in the sequence are orthogonality, orthogonal to each other under some inner product. The most widely used orthogonal polynomials are the classical orthogonal polynomials, consisting of the Hermite polynomials, the Laguerre polynomials and the Jacobi polynomials. The Gegenbauer polynomials form the most important class of Jacobi polynomials; they include the Chebyshev polynomials, and the Legendre polynomials as special cases. The field of orthogonal polynomials developed in the late 19th century from a study of continued fractions by Pafnuty Chebyshev, P. L. Chebyshev and was pursued by Andrey Markov, A. A. Markov and Thomas Joannes Stieltjes, T. J. Stieltjes. They appear in a wide variety of fields: numerical analysis (Gaussian quadrature, quadrature rules), probability theory, representation theory (of Lie group, Lie groups, quantum group, quantum groups, and re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Moment (mathematics)
In mathematics, the moments of a function are certain quantitative measures related to the shape of the function's graph. If the function represents mass density, then the zeroth moment is the total mass, the first moment (normalized by total mass) is the center of mass, and the second moment is the moment of inertia. If the function is a probability distribution, then the first moment is the expected value, the second central moment is the variance, the third standardized moment is the skewness, and the fourth standardized moment is the kurtosis. The mathematical concept is closely related to the concept of moment in physics. For a distribution of mass or probability on a bounded interval, the collection of all the moments (of all orders, from to ) uniquely determines the distribution (Hausdorff moment problem). The same is not true on unbounded intervals (Hamburger moment problem). In the mid-nineteenth century, Pafnuty Chebyshev became the first person to think systematic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Secondary Measure
In mathematics, the secondary measure associated with a measure of positive density ρ when there is one, is a measure of positive density μ, turning the secondary polynomials associated with the orthogonal polynomials for ρ into an orthogonal system. Introduction Under certain assumptions that we will specify further, it is possible to obtain the existence of a secondary measure and even to express it. For example, if one works in the Hilbert space ''L''2(, 1 R, ρ) : \forall x \in ,1 \qquad \mu(x)=\frac with : \varphi(x) = \lim_ 2\int_0^1\frac \, dt in the general case, or: : \varphi(x) = 2\rho(x)\text\left(\frac\right) - 2 \int_0^1\frac \, dt when ρ satisfies a Lipschitz condition. This application φ is called the reducer of ρ. More generally, μ et ρ are linked by their Stieltjes transformation with the following formula: : S_(z)=z-c_1-\frac in which ''c''1 is the moment of order 1 of the measure ρ. These secondary measures, and the theory around ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]