Scott-continuous
   HOME
*





Scott-continuous
In mathematics, given two partially ordered sets ''P'' and ''Q'', a Function (mathematics), function ''f'': ''P'' → ''Q'' between them is Scott-continuous (named after the mathematician Dana Scott) if it limit preserving function (order theory), preserves all directed supremum, directed suprema. That is, for every directed subset ''D'' of ''P'' with supremum in ''P'', its image (mathematics), image has a supremum in ''Q'', and that supremum is the image of the supremum of ''D'', i.e. \sqcup f[D] = f(\sqcup D), where \sqcup is the directed join. When Q is the poset of truth values, i.e. Sierpiński space, then Scott-continuous functions are Indicator function, characteristic functions of open sets, and thus Sierpiński space is the classifying space for open sets. A subset ''O'' of a partially ordered set ''P'' is called Scott-open if it is an upper set and if it is inaccessible by directed joins, i.e. if all directed sets ''D'' with supremum in ''O'' have non-empty intersection (se ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Limit Preserving Function (order Theory)
In the mathematical area of order theory, one often speaks about functions that preserve certain limits, i.e. certain suprema or infima. Roughly speaking, these functions map the supremum/infimum of a set to the supremum/infimum of the image of the set. Depending on the type of sets for which a function satisfies this property, it may preserve finite, directed, non-empty, or just arbitrary suprema or infima. Each of these requirements appears naturally and frequently in many areas of order theory and there are various important relationships among these concepts and other notions such as monotonicity. If the implication of limit preservation is inverted, such that the existence of limits in the range of a function implies the existence of limits in the domain, then one obtains functions that are limit-reflecting. The purpose of this article is to clarify the definition of these basic concepts, which is necessary since the literature is not always consistent at this point, and to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dana Scott
Dana Stewart Scott (born October 11, 1932) is an American logician who is the emeritus Hillman University Professor of Computer Science, Philosophy, and Mathematical Logic at Carnegie Mellon University; he is now retired and lives in Berkeley, California. His work on automata theory earned him the Turing Award in 1976, while his collaborative work with Christopher Strachey in the 1970s laid the foundations of modern approaches to the semantics of programming languages. He has worked also on modal logic, topology, and category theory. Early career He received his B.A. in Mathematics from the University of California, Berkeley, in 1954. He wrote his Ph.D. thesis on ''Convergent Sequences of Complete Theories'' under the supervision of Alonzo Church while at Princeton, and defended his thesis in 1958. Solomon Feferman (2005) writes of this period: After completing his Ph.D. studies, he moved to the University of Chicago, working as an instructor there until 1960. In 1959, he pu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Directed Complete Partial Order
In mathematics, the phrase complete partial order is variously used to refer to at least three similar, but distinct, classes of partially ordered sets, characterized by particular completeness properties. Complete partial orders play a central role in theoretical computer science: in denotational semantics and domain theory. Definitions A complete partial order, abbreviated cpo, can refer to any of the following concepts depending on context. * A partially ordered set is a directed-complete partial order (dcpo) if each of its directed subsets has a supremum. A subset of a partial order is directed if it is non-empty and every pair of elements has an upper bound in the subset. In the literature, dcpos sometimes also appear under the label up-complete poset. * A partially ordered set is a pointed directed-complete partial order if it is a dcpo with a least element. They are sometimes abbreviated cppos. * A partially ordered set is a ω-complete partial order (ω-cpo) if it i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Denotational Semantics
In computer science, denotational semantics (initially known as mathematical semantics or Scott–Strachey semantics) is an approach of formalizing the meanings of programming languages by constructing mathematical objects (called ''denotations'') that describe the meanings of expressions from the languages. Other approaches providing formal semantics of programming languages include axiomatic semantics and operational semantics. Broadly speaking, denotational semantics is concerned with finding mathematical objects called domains that represent what programs do. For example, programs (or program phrases) might be represented by partial functionsDana S. ScottOutline of a mathematical theory of computation Technical Monograph PRG-2, Oxford University Computing Laboratory, Oxford, England, November 1970.Dana Scott and Christopher Strachey. ''Toward a mathematical semantics for computer languages'' Oxford Programming Research Group Technical Monograph. PRG-6. 1971. or by games ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lattice (order)
A lattice is an abstract structure studied in the mathematical subdisciplines of order theory and abstract algebra. It consists of a partially ordered set in which every pair of elements has a unique supremum (also called a least upper bound or join) and a unique infimum (also called a greatest lower bound or meet). An example is given by the power set of a set, partially ordered by inclusion, for which the supremum is the union and the infimum is the intersection. Another example is given by the natural numbers, partially ordered by divisibility, for which the supremum is the least common multiple and the infimum is the greatest common divisor. Lattices can also be characterized as algebraic structures satisfying certain axiomatic identities. Since the two definitions are equivalent, lattice theory draws on both order theory and universal algebra. Semilattices include lattices, which in turn include Heyting and Boolean algebras. These ''lattice-like'' structures all admi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sober Space
In mathematics, a sober space is a topological space ''X'' such that every (nonempty) irreducible closed subset of ''X'' is the closure of exactly one point of ''X'': that is, every irreducible closed subset has a unique generic point. Definitions Sober spaces have a variety of cryptomorphic definitions, which are documented in this section. All except the definition in terms of nets are described in. In each case below, replacing "unique" with "at most one" gives an equivalent formulation of the T0 axiom. Replacing it with "at least one" is equivalent to the property that the T0 quotient of the space is sober, which is sometimes referred to as having "enough points" in the literature. In terms of morphisms of frames and locales A topological space ''X'' is sober if every map that preserves all joins and all finite meets from its partially ordered set of open subsets to \ is the inverse image of a unique continuous function from the one-point space to ''X''. This may be view ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Open Neighbourhood
In topology and related areas of mathematics, a neighbourhood (or neighborhood) is one of the basic concepts in a topological space. It is closely related to the concepts of open set and interior. Intuitively speaking, a neighbourhood of a point is a set of points containing that point where one can move some amount in any direction away from that point without leaving the set. Definitions Neighbourhood of a point If X is a topological space and p is a point in X, then a of p is a subset V of X that includes an open set U containing p, p \in U \subseteq V \subseteq X. This is also equivalent to the point p \in X belonging to the topological interior of V in X. The neighbourhood V need be an open subset X, but when V is open in X then it is called an . Some authors have been known to require neighbourhoods to be open, so it is important to note conventions. A set that is a neighbourhood of each of its points is open since it can be expressed as the union of open se ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Specialization Order
In the branch of mathematics known as topology, the specialization (or canonical) preorder is a natural preorder on the set of the points of a topological space. For most spaces that are considered in practice, namely for all those that satisfy the T0 separation axiom, this preorder is even a partial order (called the specialization order). On the other hand, for T1 spaces the order becomes trivial and is of little interest. The specialization order is often considered in applications in computer science, where T0 spaces occur in denotational semantics. The specialization order is also important for identifying suitable topologies on partially ordered sets, as is done in order theory. Definition and motivation Consider any topological space ''X''. The specialization preorder ≤ on ''X'' relates two points of ''X'' when one lies in the closure of the other. However, various authors disagree on which 'direction' the order should go. What is agreed is that if :''x'' is containe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Inclusion (set Theory)
In mathematics, set ''A'' is a subset of a set ''B'' if all elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are unequal, then ''A'' is a proper subset of ''B''. The relationship of one set being a subset of another is called inclusion (or sometimes containment). ''A'' is a subset of ''B'' may also be expressed as ''B'' includes (or contains) ''A'' or ''A'' is included (or contained) in ''B''. A ''k''-subset is a subset with ''k'' elements. The subset relation defines a partial order on sets. In fact, the subsets of a given set form a Boolean algebra under the subset relation, in which the join and meet are given by intersection and union, and the subset relation itself is the Boolean inclusion relation. Definition If ''A'' and ''B'' are sets and every element of ''A'' is also an element of ''B'', then: :*''A'' is a subset of ''B'', denoted by A \subseteq B, or equivalently, :* ''B'' i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hausdorff Space
In topology and related branches of mathematics, a Hausdorff space ( , ), separated space or T2 space is a topological space where, for any two distinct points, there exist neighbourhoods of each which are disjoint from each other. Of the many separation axioms that can be imposed on a topological space, the "Hausdorff condition" (T2) is the most frequently used and discussed. It implies the uniqueness of limits of sequences, nets, and filters. Hausdorff spaces are named after Felix Hausdorff, one of the founders of topology. Hausdorff's original definition of a topological space (in 1914) included the Hausdorff condition as an axiom. Definitions Points x and y in a topological space X can be '' separated by neighbourhoods'' if there exists a neighbourhood U of x and a neighbourhood V of y such that U and V are disjoint (U\cap V=\varnothing). X is a Hausdorff space if any two distinct points in X are separated by neighbourhoods. This condition is the third separation axiom ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


T0 Separation Axiom
In topology and related branches of mathematics, a topological space ''X'' is a T0 space or Kolmogorov space (named after Andrey Kolmogorov) if for every pair of distinct points of ''X'', at least one of them has a neighborhood not containing the other. In a T0 space, all points are topologically distinguishable. This condition, called the T0 condition, is the weakest of the separation axioms. Nearly all topological spaces normally studied in mathematics are T0 spaces. In particular, all T1 spaces, i.e., all spaces in which for every pair of distinct points, each has a neighborhood not containing the other, are T0 spaces. This includes all T2 (or Hausdorff) spaces, i.e., all topological spaces in which distinct points have disjoint neighbourhoods. In another direction, every sober space (which may not be T1) is T0; this includes the underlying topological space of any scheme. Given any topological space one can construct a T0 space by identifying topologically indistinguishab ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]