Salinon Shaded
   HOME
*





Salinon Shaded
The salinon (meaning 'salt-cellar' in Greek) is a geometrical figure that consists of four semicircles. It was first introduced in the ''Book of Lemmas'', a work attributed to Archimedes. Construction Let ''A'', ''D'', ''E'', and ''B'' be four points on a line in the plane, in that order, with ''AD'' = ''EB''. Let ''O'' be the bisector of segment ''AB'' (and of ''DE''). Draw semicircles above line ''AB'' with diameters ''AB'', ''AD'', and ''EB'', and another semicircle below with diameter ''DE''. A salinon is the figure bounded by these four semicircles. Properties Area Archimedes introduced the salinon in his ''Book of Lemmas'' by applying Book II, Proposition 10 of Euclid's ''Elements''. Archimedes noted that "the area of the figure bounded by the circumferences of all the semicircles sequal to the area of the circle on CF as diameter." Namely, if r_1 is the radius of large enclosing semicircle, and r_2 is the radius of the small central semicircle, then the area of the sa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Salinon
The salinon (meaning 'salt-cellar' in Greek) is a geometrical figure that consists of four semicircles. It was first introduced in the ''Book of Lemmas'', a work attributed to Archimedes. Construction Let ''A'', ''D'', ''E'', and ''B'' be four points on a line in the plane, in that order, with ''AD'' = ''EB''. Let ''O'' be the bisector of segment ''AB'' (and of ''DE''). Draw semicircles above line ''AB'' with diameters ''AB'', ''AD'', and ''EB'', and another semicircle below with diameter ''DE''. A salinon is the figure bounded by these four semicircles. Properties Area Archimedes introduced the salinon in his ''Book of Lemmas'' by applying Book II, Proposition 10 of Euclid's ''Elements''. Archimedes noted that "the area of the figure bounded by the circumferences of all the semicircles sequal to the area of the circle on CF as diameter." Namely, if r_1 is the radius of large enclosing semicircle, and r_2 is the radius of the small central semicircle, then the area of the sa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Geometrical Figure
A shape or figure is a graphical representation of an object or its external boundary, outline, or external surface, as opposed to other properties such as color, texture, or material type. A plane shape or plane figure is constrained to lie on a ''plane'', in contrast to ''solid'' 3D shapes. A two-dimensional shape or two-dimensional figure (also: 2D shape or 2D figure) may lie on a more general curved ''surface'' (a non-Euclidean two-dimensional space). Classification of simple shapes Some simple shapes can be put into broad categories. For instance, polygons are classified according to their number of edges as triangles, quadrilaterals, pentagons, etc. Each of these is divided into smaller categories; triangles can be equilateral, isosceles, obtuse, acute, scalene, etc. while quadrilaterals can be rectangles, rhombi, trapezoids, squares, etc. Other common shapes are points, lines, planes, and conic sections such as ellipses, circles, and parabolas. Among the mo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Semicircle
In mathematics (and more specifically geometry), a semicircle is a one-dimensional locus of points that forms half of a circle. The full arc of a semicircle always measures 180° (equivalently, radians, or a half-turn). It has only one line of symmetry (reflection symmetry). In non-technical usage, the term "semicircle" is sometimes used to refer to a half-disk, which is a two-dimensional geometric shape that also includes the diameter segment from one end of the arc to the other as well as all the interior points. By Thales' theorem, any triangle inscribed in a semicircle with a vertex at each of the endpoints of the semicircle and the third vertex elsewhere on the semicircle is a right triangle, with a right angle at the third vertex. All lines intersecting the semicircle perpendicularly are concurrent at the center of the circle containing the given semicircle. Uses A semicircle can be used to construct the arithmetic and geometric means of two lengths using straight-e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Book Of Lemmas
The ''Book of Lemmas'' or ''Book of Assumptions'' (Arabic ''Maʾkhūdhāt Mansūba ilā Arshimīdis'') is a book attributed to Archimedes by Thābit ibn Qurra, though the authorship of the book is questionable. It consists of fifteen propositions (lemmas) on circles. History Translations The ''Book of Lemmas'' was first introduced in Arabic by Thābit ibn Qurra; he attributed the work to Archimedes. In 1661, the Arabic manuscript was translated into Latin by Abraham Ecchellensis and edited by Giovanni A. Borelli. The Latin version was published under the name ''Liber Assumptorum''. T. L. Heath translated Heiburg's Latin work into English in his ''The Works of Archimedes''. A more recently discovered manuscript copy of Thābit ibn Qurra's Arabic translation was translated into English by Emre Coşkun in 2018. Authorship The original authorship of the ''Book of Lemmas'' has been in question because in proposition four, the book refers to Archimedes in third person; however, it ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Archimedes
Archimedes of Syracuse (;; ) was a Greek mathematician, physicist, engineer, astronomer, and inventor from the ancient city of Syracuse in Sicily. Although few details of his life are known, he is regarded as one of the leading scientists in classical antiquity. Considered the greatest mathematician of ancient history, and one of the greatest of all time,* * * * * * * * * * Archimedes anticipated modern calculus and analysis by applying the concept of the infinitely small and the method of exhaustion to derive and rigorously prove a range of geometrical theorems. These include the area of a circle, the surface area and volume of a sphere, the area of an ellipse, the area under a parabola, the volume of a segment of a paraboloid of revolution, the volume of a segment of a hyperboloid of revolution, and the area of a spiral. Heath, Thomas L. 1897. ''Works of Archimedes''. Archimedes' other mathematical achievements include deriving an approximation of pi, defining and in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Diameter
In geometry, a diameter of a circle is any straight line segment that passes through the center of the circle and whose endpoints lie on the circle. It can also be defined as the longest chord of the circle. Both definitions are also valid for the diameter of a sphere. In more modern usage, the length d of a diameter is also called the diameter. In this sense one speaks of diameter rather than diameter (which refers to the line segment itself), because all diameters of a circle or sphere have the same length, this being twice the radius r. :d = 2r \qquad\text\qquad r = \frac. For a convex shape in the plane, the diameter is defined to be the largest distance that can be formed between two opposite parallel lines tangent to its boundary, and the is often defined to be the smallest such distance. Both quantities can be calculated efficiently using rotating calipers. For a curve of constant width such as the Reuleaux triangle, the width and diameter are the same because all ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Euclid's Elements
The ''Elements'' ( grc, Στοιχεῖα ''Stoikheîa'') is a mathematical treatise consisting of 13 books attributed to the ancient Greek mathematician Euclid in Alexandria, Ptolemaic Egypt 300 BC. It is a collection of definitions, postulates, propositions (theorems and constructions), and mathematical proofs of the propositions. The books cover plane and solid Euclidean geometry, elementary number theory, and incommensurable lines. ''Elements'' is the oldest extant large-scale deductive treatment of mathematics. It has proven instrumental in the development of logic and modern science, and its logical rigor was not surpassed until the 19th century. Euclid's ''Elements'' has been referred to as the most successful and influential textbook ever written. It was one of the very earliest mathematical works to be printed after the invention of the printing press and has been estimated to be second only to the Bible in the number of editions published since the first printing i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cut-the-knot
Alexander Bogomolny (January 4, 1948 July 7, 2018) was a Soviet-born Israeli-American mathematician. He was Professor Emeritus of Mathematics at the University of Iowa, and formerly research fellow at the Moscow Institute of Electronics and Mathematics, senior instructor at Hebrew University and software consultant at Ben Gurion University. He wrote extensively about arithmetic, probability, algebra, geometry, trigonometry and mathematical games. He was known for his contribution to heuristics and mathematics education, creating and maintaining the mathematically themed educational website ''Cut-the-Knot'' for the Mathematical Association of America (MAA) Online. He was a pioneer in mathematical education on the internet, having started ''Cut-the-Knot'' in October 1996.Interview with Alexander ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Arbelos
In geometry, an arbelos is a plane region bounded by three semicircles with three apexes such that each corner of each semicircle is shared with one of the others (connected), all on the same side of a straight line (the ''baseline'') that contains their diameters. The earliest known reference to this figure is in Archimedes's ''Book of Lemmas'', where some of its mathematical properties are stated as Propositions 4 through 8. The word ''arbelos'' is Greek for 'shoemaker's knife'. The figure is closely related to the Pappus chain. Properties Two of the semicircles are necessarily concave, with arbitrary diameters and ; the third semicircle is convex, with diameter Area The area of the arbelos is equal to the area of a circle with diameter . Proof: For the proof, reflect the arbelos over the line through the points and , and observe that twice the area of the arbelos is what remains when the areas of the two smaller circles (with diameters , ) are subtracted from the area ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Symmetry
Symmetry (from grc, συμμετρία "agreement in dimensions, due proportion, arrangement") in everyday language refers to a sense of harmonious and beautiful proportion and balance. In mathematics, "symmetry" has a more precise definition, and is usually used to refer to an object that is invariant under some transformations; including translation, reflection, rotation or scaling. Although these two meanings of "symmetry" can sometimes be told apart, they are intricately related, and hence are discussed together in this article. Mathematical symmetry may be observed with respect to the passage of time; as a spatial relationship; through geometric transformations; through other kinds of functional transformations; and as an aspect of abstract objects, including theoretic models, language, and music. This article describes symmetry from three perspectives: in mathematics, including geometry, the most familiar type of symmetry for many people; in science and nature ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Y-axis
A Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured in the same unit of length. Each reference coordinate line is called a ''coordinate axis'' or just ''axis'' (plural ''axes'') of the system, and the point where they meet is its ''origin'', at ordered pair . The coordinates can also be defined as the positions of the perpendicular projections of the point onto the two axes, expressed as signed distances from the origin. One can use the same principle to specify the position of any point in three-dimensional space by three Cartesian coordinates, its signed distances to three mutually perpendicular planes (or, equivalently, by its perpendicular projection onto three mutually perpendicular lines). In general, ''n'' Cartesian coordinates (an element of real ''n''-space) specify the point in an ' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lune Of Hippocrates
In geometry, the lune of Hippocrates, named after Hippocrates of Chios, is a lune (mathematics), lune bounded by Circular arc, arcs of two circles, the smaller of which has as its diameter a Chord (geometry), chord spanning a right angle on the larger circle. Equivalently, it is a non-Convex set, convex plane region bounded by one 180-degree circular arc and one 90-degree circular arc. It was the first curved figure to have its exact area calculated mathematically.. Translated from Postnikov's 1963 Russian book on Galois theory. History Hippocrates wanted to solve the classic problem of squaring the circle, i.e. constructing a square by means of straightedge and compass, having the same area as a given circle. He proved that the lune bounded by the arcs labeled ''E'' and ''F'' in the figure has the same area as triangle ''ABO''. This afforded some hope of solving the circle-squaring problem, since the lune is bounded only by arcs of circles. Thomas Little Heath, Heath concl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]