Sacks Property
   HOME
*





Sacks Property
In mathematical set theory, the Sacks property holds between two models of Zermelo–Fraenkel set theory if they are not "too dissimilar" in the following sense. For M and N transitive models of set theory, N is said to have the Sacks property over M if and only if for every function g\in M mapping \omega to \omega\setminus\ such that g diverges to infinity, and every function f\in N mapping \omega to \omega there is a tree T\in M such that for every n the n^ level of T has cardinality at most g(n) and f is a branch of T. The Sacks property is used to control the value of certain cardinal invariants in forcing arguments. It is named for Gerald Enoch Sacks. A forcing notion is said to have the Sacks property if and only if the forcing extension has the Sacks property over the ground model. Examples include Sacks forcing and Silver forcing. Shelah Shelah may refer to: * Shelah (son of Judah), a son of Judah according to the Bible * Shelah (name), a Hebrew personal name * Shl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Model Theory
In mathematical logic, model theory is the study of the relationship between formal theories (a collection of sentences in a formal language expressing statements about a mathematical structure), and their models (those structures in which the statements of the theory hold). The aspects investigated include the number and size of models of a theory, the relationship of different models to each other, and their interaction with the formal language itself. In particular, model theorists also investigate the sets that can be defined in a model of a theory, and the relationship of such definable sets to each other. As a separate discipline, model theory goes back to Alfred Tarski, who first used the term "Theory of Models" in publication in 1954. Since the 1970s, the subject has been shaped decisively by Saharon Shelah's stability theory. Compared to other areas of mathematical logic such as proof theory, model theory is often less concerned with formal rigour and closer in spirit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Zermelo–Fraenkel Set Theory
In set theory, Zermelo–Fraenkel set theory, named after mathematicians Ernst Zermelo and Abraham Fraenkel, is an axiomatic system that was proposed in the early twentieth century in order to formulate a theory of sets free of paradoxes such as Russell's paradox. Today, Zermelo–Fraenkel set theory, with the historically controversial axiom of choice (AC) included, is the standard form of axiomatic set theory and as such is the most common foundation of mathematics. Zermelo–Fraenkel set theory with the axiom of choice included is abbreviated ZFC, where C stands for "choice", and ZF refers to the axioms of Zermelo–Fraenkel set theory with the axiom of choice excluded. Informally, Zermelo–Fraenkel set theory is intended to formalize a single primitive notion, that of a hereditary well-founded set, so that all entities in the universe of discourse are such sets. Thus the axioms of Zermelo–Fraenkel set theory refer only to pure sets and prevent its models from containing u ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Tree (set Theory)
In set theory, a tree is a partially ordered set (''T'', <) such that for each ''t'' ∈ ''T'', the set is by the relation <. Frequently trees are assumed to have only one root (i.e. ), as the typical questions investigated in this field are easily reduced to questions about single-rooted trees.


Definition

A tree is a (poset) (''T'', <) such that for each ''t'' ∈ ''T'', the set is by the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Combinatorica
''Combinatorica'' is an international journal of mathematics, publishing papers in the fields of combinatorics and computer science. It started in 1981, with László Babai and László Lovász as the editors-in-chief with Paul Erdős as honorary editor-in-chief. The current editors-in-chief are Imre Bárány and József Solymosi. The advisory board consists of Ronald Graham, Gyula O. H. Katona, Miklós Simonovits, Vera Sós, and Endre Szemerédi. It is published by the János Bolyai Mathematical Society and Springer Verlag. The following members of the '' Hungarian School of Combinatorics'' have strongly contributed to the journal as authors, or have served as editors: Miklós Ajtai, László Babai, József Beck, András Frank, Péter Frankl, Zoltán Füredi, András Hajnal, Gyula Katona, László Lovász, László Pyber, Alexander Schrijver, Miklós Simonovits, Vera Sós, Endre Szemerédi, Tamás Szőnyi, Éva Tardos, Gábor Tardos.{{cite web, url=https://www.springer.com/ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cardinal Invariant
In mathematics, a cardinal function (or cardinal invariant) is a function that returns cardinal numbers. Cardinal functions in set theory * The most frequently used cardinal function is a function that assigns to a set ''A'' its cardinality, denoted by ,  ''A'' , . * Aleph numbers and beth numbers can both be seen as cardinal functions defined on ordinal numbers. * Cardinal arithmetic operations are examples of functions from cardinal numbers (or pairs of them) to cardinal numbers. * Cardinal characteristics of a (proper) ideal ''I'' of subsets of ''X'' are: :(I)=\min\. ::The "additivity" of ''I'' is the smallest number of sets from ''I'' whose union is not in ''I'' any more. As any ideal is closed under finite unions, this number is always at least \aleph_0; if ''I'' is a σ-ideal, then \operatorname(I) \ge \aleph_1. :\operatorname(I)=\min\. :: The "covering number" of ''I'' is the smallest number of sets from ''I'' whose union is all of ''X''. As ''X'' itself ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Forcing (set Theory)
In the mathematical discipline of set theory, forcing is a technique for proving consistency and independence results. It was first used by Paul Cohen in 1963, to prove the independence of the axiom of choice and the continuum hypothesis from Zermelo–Fraenkel set theory. Forcing has been considerably reworked and simplified in the following years, and has since served as a powerful technique, both in set theory and in areas of mathematical logic such as recursion theory. Descriptive set theory uses the notions of forcing from both recursion theory and set theory. Forcing has also been used in model theory, but it is common in model theory to define genericity directly without mention of forcing. Intuition Intuitively, forcing consists of expanding the set theoretical universe V to a larger universe V^ . In this bigger universe, for example, one might have many new real numbers, identified with subsets of the set \mathbb of natural numbers, that were not there in the old u ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gerald Sacks
Gerald Enoch Sacks (1933 – October 4, 2019) was a logician whose most important contributions were in recursion theory. Named after him is Sacks forcing, a forcing notion based on perfect sets and the Sacks Density Theorem, which asserts that the partial order of the recursively enumerable Turing degrees is dense. Sacks had a joint appointment as a professor at the Massachusetts Institute of Technology and at Harvard University starting in 1972 and became emeritus at M.I.T. in 2006 and at Harvard in 2012. Sacks was born in Brooklyn in 1933. He earned his Ph.D. in 1961 from Cornell University under the direction of J. Barkley Rosser, with his dissertation ''On Suborderings of Degrees of Recursive Insolvability''. Among his notable students are Lenore Blum, Harvey Friedman, Sy Friedman, Leo Harrington, Richard Shore, Steve Simpson and Theodore Slaman Theodore Allen Slaman (born April 17, 1954) is a professor of mathematics at the University of California, Berkeley who works in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Forcing (mathematics)
In the mathematical discipline of set theory, forcing is a technique for proving consistency and independence results. It was first used by Paul Cohen in 1963, to prove the independence of the axiom of choice and the continuum hypothesis from Zermelo–Fraenkel set theory. Forcing has been considerably reworked and simplified in the following years, and has since served as a powerful technique, both in set theory and in areas of mathematical logic such as recursion theory. Descriptive set theory uses the notions of forcing from both recursion theory and set theory. Forcing has also been used in model theory, but it is common in model theory to define genericity directly without mention of forcing. Intuition Intuitively, forcing consists of expanding the set theoretical universe V to a larger universe V^ . In this bigger universe, for example, one might have many new real numbers, identified with subsets of the set \mathbb of natural numbers, that were not there in the old ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


List Of Forcing Notions
In mathematics, forcing (mathematics), forcing is a method of constructing new models ''M''[''G''] of set theory by adding a generic subset ''G'' of a poset ''P'' to a model ''M''. The poset ''P'' used will determine what statements hold in the new universe (the 'extension'); to force a statement of interest thus requires construction of a suitable ''P''. This article lists some of the posets ''P'' that have been used in this construction. Notation *''P'' is a poset with order < *''V'' is the universe of all sets *''M'' is a countable transitive model of set theory *''G'' is a generic subset of ''P'' over ''M''.


Definitions

*''P'' satisfies the countable chain condition if every antichain in ''P'' is at most countable. This implies that ''V'' and ''V''[''G''] have the same cardinals (and the same cofinalities). *A subset ''D'' of ''P'' is called dense if for every there is some with . *A filter on ''P'' is a nonempty subset ''F'' of ''P'' such that if and th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Saharon Shelah
Saharon Shelah ( he, שהרן שלח; born July 3, 1945) is an Israeli mathematician. He is a professor of mathematics at the Hebrew University of Jerusalem and Rutgers University in New Jersey. Biography Shelah was born in Jerusalem on July 3, 1945. He is the son of the Israeli poet and political activist Yonatan Ratosh. He received his PhD for his work on stable theories in 1969 from the Hebrew University. Shelah is married to Yael, and has three children. His brother, magistrate judge Hamman Shelah was murdered along with his wife and daughter by an Egyptian soldier in the Ras Burqa massacre in 1985. Shelah planned to be a scientist while at primary school, but initially was attracted to physics and biology, not mathematics. Later he found mathematical beauty in studying geometry: He said, "But when I reached the ninth grade I began studying geometry and my eyes opened to that beauty—a system of demonstration and theorems based on a very small number of axioms which impr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Iterated Forcing
In mathematics, iterated forcing is a method for constructing models of set theory by repeating Cohen's forcing method a transfinite number of times. Iterated forcing was introduced by in their construction of a model of set theory with no Suslin tree. They also showed that iterated forcing can construct models where Martin's axiom holds and the continuum is any given regular cardinal. In iterated forcing, one has a transfinite sequence ''P''α of forcing notions indexed by some ordinals α, which give a family of Boolean-valued models ''V''''P''α. If α+1 is a successor ordinal then ''P''α+1 is often constructed from ''P''α using a forcing notion in ''V''''P''α, while if α is a limit ordinal then ''P''α is often constructed as some sort of limit (such as the direct limit) of the ''P''β for β<α. A key consideration is that, typically, it is necessary that \omega_1 is not collapsed. This is often accomplished by the use of a preservation theorem such as: * Fi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Laver Property
In mathematical set theory, the Laver property holds between two models if they are not "too dissimilar", in the following sense. For M and N transitive models of set theory, N is said to have the Laver property over M if and only if for every function g\in M mapping \omega to \omega\setminus\ such that g diverges to infinity, and every function f\in N mapping \omega to \omega and every function h\in M which bounds f, there is a tree T\in M such that each branch of T is bounded by h and for every n the n^\text level of T has cardinality at most g(n) and f is a branch of T. A forcing notion is said to have the Laver property if and only if the forcing extension has the Laver property over the ground model. Examples include Laver forcing. The concept is named after Richard Laver. Shelah proved that when proper forcings with the Laver property are iterated using countable supports, the resulting forcing notion will have the Laver property as well.C. Schlindwein, Understanding pres ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]