Laver Property
   HOME

TheInfoList



OR:

In mathematical set theory, the Laver property holds between two models if they are not "too dissimilar", in the following sense. For M and N transitive models of set theory, N is said to have the Laver property over M if and only if for every function g\in M mapping \omega to \omega\setminus\ such that g diverges to infinity, and every function f\in N mapping \omega to \omega and every function h\in M which bounds f, there is a tree T\in M such that each branch of T is bounded by h and for every n the n^\text level of T has cardinality at most g(n) and f is a branch of T. A forcing notion is said to have the Laver property if and only if the forcing extension has the Laver property over the ground model. Examples include Laver forcing. The concept is named after
Richard Laver Richard Joseph Laver (October 20, 1942 – September 19, 2012) was an American mathematician, working in set theory. Biography Laver received his PhD at the University of California, Berkeley in 1969, under the supervision of Ralph McKenzie, wit ...
.
Shelah Shelah may refer to: * Shelah (son of Judah), a son of Judah according to the Bible * Shelah (name), a Hebrew personal name * Shlach, the 37th weekly Torah portion (parshah) in the annual Jewish cycle of Torah reading * Salih, a prophet described ...
proved that when proper forcings with the Laver property are iterated using countable supports, the resulting forcing notion will have the Laver property as well.C. Schlindwein, Understanding preservation theorems: Chapter VI of Proper and Improper Forcing, I. Archive for Mathematical Logic, vol. 53, 171–202, Springer, 2014 The conjunction of the Laver property and the ^\omega\omega-bounding property is equivalent to the
Sacks property In mathematical set theory, the Sacks property holds between two models of Zermelo–Fraenkel set theory if they are not "too dissimilar" in the following sense. For M and N transitive models of set theory, N is said to have the Sacks property over ...
.


References

{{reflist Forcing (mathematics)