SPARC64 VII
   HOME



picture info

SPARC64 VII
The SPARC64 V (''Zeus'') is a SPARC V9 microprocessor designed by Fujitsu. The SPARC64 V was the basis for a series of successive processors designed for servers, and later, supercomputers. The servers series are the SPARC64 V+, VI, VI+, VII, VII+, X, X+ and XII. The SPARC64 VI and its successors up to the VII+ were used in the Fujitsu and Sun (later Oracle) SPARC Enterprise M-Series servers. In addition to servers, a version of the SPARC64 VII was also used in the commercially available Fujitsu FX1 supercomputer. As of October 2017, the SPARC64 XII is the latest server processor, and it is used in the Fujitsu and Oracle M12 servers. The supercomputer series was based on the SPARC64 VII, and are the SPARC64 VIIfx, IXfx, and XIfx. The SPARC64 VIIIfx was used in the K computer, and the SPARC64 IXfx in the commercially available PRIMEHPC FX10. As of July 2016, the SPARC64 XIfx is the latest supercomputer processor, and it is used in the Fujitsu PRIMEHPC FX100 supercomputer. H ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

SPARC64 V
The SPARC64 V (''Zeus'') is a SPARC, SPARC V9 microprocessor designed by Fujitsu. The SPARC64 V was the basis for a series of successive processors designed for servers, and later, supercomputers. The servers series are the SPARC64 V+, VI, VI+, VII, VII+, X, X+ and XII. The SPARC64 VI and its successors up to the VII+ were used in the Fujitsu and Sun (later Oracle Corporation, Oracle) SPARC Enterprise, SPARC Enterprise M-Series servers. In addition to servers, a version of the SPARC64 VII was also used in the commercially available Fujitsu FX1 supercomputer. As of October 2017, the SPARC64 XII is the latest server processor, and it is used in the Fujitsu and Oracle M12 servers. The supercomputer series was based on the SPARC64 VII, and are the SPARC64 VIIfx, IXfx, and XIfx. The SPARC64 VIIIfx was used in the K computer, and the SPARC64 IXfx in the commercially available PRIMEHPC FX10. As of July 2016, the SPARC64 XIfx is the latest supercomputer processor, and it is used in the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




SPARC64 V+
The SPARC64 V (''Zeus'') is a SPARC V9 microprocessor designed by Fujitsu. The SPARC64 V was the basis for a series of successive processors designed for servers, and later, supercomputers. The servers series are the SPARC64 V+, VI, VI+, VII, VII+, X, X+ and XII. The SPARC64 VI and its successors up to the VII+ were used in the Fujitsu and Sun (later Oracle) SPARC Enterprise M-Series servers. In addition to servers, a version of the SPARC64 VII was also used in the commercially available Fujitsu FX1 supercomputer. As of October 2017, the SPARC64 XII is the latest server processor, and it is used in the Fujitsu and Oracle M12 servers. The supercomputer series was based on the SPARC64 VII, and are the SPARC64 VIIfx, IXfx, and XIfx. The SPARC64 VIIIfx was used in the K computer, and the SPARC64 IXfx in the commercially available PRIMEHPC FX10. As of July 2016, the SPARC64 XIfx is the latest supercomputer processor, and it is used in the Fujitsu PRIMEHPC FX100 supercomputer. H ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Arithmetic Logic Unit
In computing, an arithmetic logic unit (ALU) is a Combinational logic, combinational digital circuit that performs arithmetic and bitwise operations on integer binary numbers. This is in contrast to a floating-point unit (FPU), which operates on floating point numbers. It is a fundamental building block of many types of computing circuits, including the central processing unit (CPU) of computers, FPUs, and graphics processing units (GPUs). The inputs to an ALU are the data to be operated on, called operands, and a code indicating the operation to be performed (opcode); the ALU's output is the result of the performed operation. In many designs, the ALU also has status inputs or outputs, or both, which convey information about a previous operation or the current operation, respectively, between the ALU and external status registers. Signals An ALU has a variety of input and output net (electronics), nets, which are the electrical conductors used to convey Digital signal (electroni ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Kibibyte
The byte is a unit of digital information that most commonly consists of eight bits. Historically, the byte was the number of bits used to encode a single character of text in a computer and for this reason it is the smallest addressable unit of memory in many computer architectures. To disambiguate arbitrarily sized bytes from the common 8-bit definition, network protocol documents such as the Internet Protocol () refer to an 8-bit byte as an octet. Those bits in an octet are usually counted with numbering from 0 to 7 or 7 to 0 depending on the bit endianness. The size of the byte has historically been hardware-dependent and no definitive standards existed that mandated the size. Sizes from 1 to 48 bits have been used. The six-bit character code was an often-used implementation in early encoding systems, and computers using six-bit and nine-bit bytes were common in the 1960s. These systems often had memory words of 12, 18, 24, 30, 36, 48, or 60 bits, corresponding to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Copper Interconnect
Copper interconnects are used in integrated circuits to reduce propagation delays and power consumption. Since copper is a better conductor than aluminium, ICs using copper for their interconnects can have interconnects with narrower dimensions, and use less energy to pass electricity through them. Together, these effects lead to ICs with better performance. They were first introduced by IBM, with assistance from Motorola, in 1997. The transition from aluminium to copper required significant developments in fabrication techniques, including radically different methods for patterning the metal as well as the introduction of barrier metal layers to isolate the silicon from potentially damaging copper atoms. Although the methods of superconformal copper electrodepostion were known since late 1960, their application at the (sub)micron via scale (e.g. in microchips) started only in 1988-1995 (see figure). By year 2002 it became a mature technology, and research and development effo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


90 Nanometer
The 90 nm process refers to the technology used in semiconductor manufacturing to create integrated circuits with a minimum feature size of 90 nanometers. It was an advancement over the previous 130 nm process. Eventually, it was succeeded by smaller process nodes, such as the 65 nm, 45 nm, and 32 nm processes. It was commercialized by the 2003–2005 timeframe, by semiconductor companies including Toshiba, Sony, Samsung, IBM, Intel, Fujitsu, TSMC, Elpida, AMD, Infineon, Texas Instruments and Micron Technology. The origin of the 90 nm value is historical; it reflects a trend of 70% scaling every 2–3 years. The naming is formally determined by the International Technology Roadmap for Semiconductors (ITRS). The 300 mm wafer size became mainstream at the 90 nm node. The previous wafer size was 200 mm diameter. The 193  nm wavelength was introduced by many (but not all) companies for lithography of critical layers mainly during the 90 nm nod ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Silicon On Insulator
In semiconductor manufacturing, silicon on insulator (SOI) technology is fabrication of silicon semiconductor devices in a layered silicon–insulator–silicon substrate, to reduce parasitic capacitance within the device, thereby improving performance. SOI-based devices differ from conventional silicon-built devices in that the silicon junction is above an electrical insulator, typically silicon dioxide or sapphire (these types of devices are called silicon on sapphire, or SOS). The choice of insulator depends largely on intended application, with sapphire being used for high-performance radio frequency (RF) and radiation-sensitive applications, and silicon dioxide for diminished short-channel effects in other microelectronics devices. The insulating layer and topmost silicon layer also vary widely with application. Industry need SOI technology is one of several manufacturing strategies to allow the continued miniaturization of microelectronic devices, colloquially referred to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Complementary Metal–oxide–semiconductor
Complementary metal–oxide–semiconductor (CMOS, pronounced "sea-moss ", , ) is a type of MOSFET, metal–oxide–semiconductor field-effect transistor (MOSFET) semiconductor device fabrication, fabrication process that uses complementary and symmetrical pairs of p-type semiconductor, p-type and n-type semiconductor, n-type MOSFETs for logic functions. CMOS technology is used for constructing integrated circuit (IC) chips, including microprocessors, microcontrollers, memory chips (including Nonvolatile BIOS memory, CMOS BIOS), and other digital logic circuits. CMOS technology is also used for analog circuits such as image sensors (CMOS sensors), data conversion, data converters, RF circuits (RF CMOS), and highly integrated transceivers for many types of communication. In 1948, Bardeen and Brattain patented an insulated-gate transistor (IGFET) with an inversion layer. Bardeen's concept forms the basis of CMOS technology today. The CMOS process was presented by Fairchild Semico ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


130 Nanometer
The 130 nanometer (130 nm) process is a level of semiconductor process technology that was reached in the 2000–2001 timeframe by such leading semiconductor companies as Intel, Texas Instruments, IBM, and TSMC. The origin of the 130 nm value is historical, as it reflects a trend of 70% scaling every 2–3 years. The naming is formally determined by the International Technology Roadmap for Semiconductors (ITRS). Some of the first CPUs manufactured with this process include Intel Tualatin family of Pentium III processors. Processors using 130 nm manufacturing technology * Motorola PowerPC 7447 and 7457 2002 * IBM Gekko (GameCube) * IBM PowerPC G5 970 - October 2002 - June 2003 * Intel Pentium III Tualatin - 2001-06 * Intel Celeron Tualatin-256 - 2001-10-02 * Intel Pentium M Banias - 2003-03-12 * Intel Pentium 4 Northwood - 2002-01-07 * Intel Celeron Northwood-128 - 2002-09-18 * Intel Xeon Prestonia and Gallatin - 2002-02-25 * VIA C3 - 2001 * AMD Athlon XP Thorough ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Semiconductor Device Fabrication
Semiconductor device fabrication is the process used to manufacture semiconductor devices, typically integrated circuits (ICs) such as microprocessors, microcontrollers, and memories (such as Random-access memory, RAM and flash memory). It is a multiple-step Photolithography, photolithographic and physico-chemical process (with steps such as thermal oxidation, thin-film deposition, ion-implantation, etching) during which electronic circuits are gradually created on a wafer (electronics), wafer, typically made of pure single-crystal semiconducting material. Silicon is almost always used, but various compound semiconductors are used for specialized applications. This article focuses on the manufacture of integrated circuits, however steps such as etching and photolithography can be used to manufacture other devices such as LCD and OLED displays. The fabrication process is performed in highly specialized semiconductor fabrication plants, also called foundries or "fabs", with the cen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Single Instruction, Multiple Data
Single instruction, multiple data (SIMD) is a type of parallel computer, parallel processing in Flynn's taxonomy. SIMD describes computers with multiple processing elements that perform the same operation on multiple data points simultaneously. SIMD can be internal (part of the hardware design) and it can be directly accessible through an instruction set architecture (ISA), but it should not be confused with an ISA. Such machines exploit Data parallelism, data level parallelism, but not Concurrent computing, concurrency: there are simultaneous (parallel) computations, but each unit performs exactly the same instruction at any given moment (just with different data). A simple example is to add many pairs of numbers together, all of the SIMD units are performing an addition, but each one has different pairs of values to add. SIMD is particularly applicable to common tasks such as adjusting the contrast in a digital image or adjusting the volume of digital audio. Most modern Cen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]