SK Combinator Calculus
The SKI combinator calculus is a combinatory logic system and a computational system. It can be thought of as a computer programming language, though it is not convenient for writing software. Instead, it is important in the mathematical theory of algorithms because it is an extremely simple Turing complete language. It can be likened to a reduced version of the untyped lambda calculus. It was introduced by Moses Schönfinkel and Haskell Curry. All operations in lambda calculus can be encoded via abstraction elimination into the SKI calculus as binary trees whose leaves are one of the three symbols S, K, and I (called ''combinators''). Notation Although the most formal representation of the objects in this system requires binary trees, for simpler typesetting they are often represented as parenthesized expressions, as a shorthand for the tree they represent. Any subtrees may be parenthesized, but often only the right-side subtrees are parenthesized, with left associativity impl ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Combinatory Logic
Combinatory logic is a notation to eliminate the need for quantified variables in mathematical logic. It was introduced by Moses Schönfinkel and Haskell Curry, and has more recently been used in computer science as a theoretical model of computation and also as a basis for the design of functional programming languages. It is based on combinators, which were introduced by Schönfinkel in 1920 with the idea of providing an analogous way to build up functions—and to remove any mention of variables—particularly in predicate logic. A combinator is a higher-order function that uses only function application and earlier defined combinators to define a result from its arguments. In mathematics Combinatory logic was originally intended as a 'pre-logic' that would clarify the role of quantified variables in logic, essentially by eliminating them. Another way of eliminating quantified variables is Quine's predicate functor logic. While the expressive power of combinatory logic ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Intuitionistic Logic
Intuitionistic logic, sometimes more generally called constructive logic, refers to systems of symbolic logic that differ from the systems used for classical logic by more closely mirroring the notion of constructive proof. In particular, systems of intuitionistic logic do not assume the law of the excluded middle and double negation elimination, which are fundamental inference rules in classical logic. Formalized intuitionistic logic was originally developed by Arend Heyting to provide a formal basis for L. E. J. Brouwer's programme of intuitionism. From a proof-theoretic perspective, Heyting’s calculus is a restriction of classical logic in which the law of excluded middle and double negation elimination have been removed. Excluded middle and double negation elimination can still be proved for some propositions on a case by case basis, however, but do not hold universally as they do with classical logic. The standard explanation of intuitionistic logic is the BHK interpretati ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
To Mock A Mockingbird
''To Mock a Mockingbird and Other Logic Puzzles: Including an Amazing Adventure in Combinatory Logic'' (1985, {{isbn, 0-19-280142-2) is a book by the mathematician and logician Raymond Smullyan. It contains many nontrivial recreational puzzles of the sort for which Smullyan is well known. It is also a gentle and humorous introduction to combinatory logic and the associated metamathematics, built on an elaborate ornithological metaphor. Combinatory logic, functionally equivalent to the lambda calculus, is a branch of symbolic logic having the expressive power of set theory, and with deep connections to questions of computability and provability. Smullyan's exposition takes the form of an imaginary account of two men going into a forest and discussing the unusual "birds" (combinators) they find there (bird watching was a hobby of one of the founders of combinatory logic, Haskell Curry, and another founder Moses Schönfinkel's name means beautiful bird). Each species of bird ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Unlambda
Unlambda is a minimal, "nearly pure" functional programming language invented by David Madore. It is based on combinatory logic, an expression system without the lambda operator or free variables. It relies mainly on two built-in functions (s and k) and an apply operator (written `, the backquote character). These alone make it Turing-complete, but there are also some input/output (I/O) functions to enable interacting with the user, some shortcut functions, and a lazy evaluation function. Variables are unsupported. Unlambda is free and open-source software distributed under a GNU General Public License (GPL) 2.0 or later. Basic principles As an esoteric programming language, Unlambda is meant as a demonstration of very pure functional programming rather than for practical use. Its main feature is the lack of conventional operators and data types—the only kind of data in the program are one-parameter functions. Data can nevertheless be simulated with appropriate functio ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Functional Programming
In computer science, functional programming is a programming paradigm where programs are constructed by Function application, applying and Function composition (computer science), composing Function (computer science), functions. It is a declarative programming paradigm in which function definitions are Tree (data structure), trees of Expression (computer science), expressions that map Value (computer science), values to other values, rather than a sequence of Imperative programming, imperative Statement (computer science), statements which update the State (computer science), running state of the program. In functional programming, functions are treated as first-class citizens, meaning that they can be bound to names (including local Identifier (computer languages), identifiers), passed as Parameter (computer programming), arguments, and Return value, returned from other functions, just as any other data type can. This allows programs to be written in a Declarative programming, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lambda Calculus
Lambda calculus (also written as ''λ''-calculus) is a formal system in mathematical logic for expressing computation based on function abstraction and application using variable binding and substitution. It is a universal model of computation that can be used to simulate any Turing machine. It was introduced by the mathematician Alonzo Church in the 1930s as part of his research into the foundations of mathematics. Lambda calculus consists of constructing § lambda terms and performing § reduction operations on them. In the simplest form of lambda calculus, terms are built using only the following rules: * x – variable, a character or string representing a parameter or mathematical/logical value. * (\lambda x.M) – abstraction, function definition (M is a lambda term). The variable x becomes bound in the expression. * (M\ N) – application, applying a function M to an argument N. M and N are lambda terms. The reduction operations include: * (\lambda x.M \rightarrow(\l ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fixed Point Combinator
In mathematics and computer science in general, a '' fixed point'' of a function is a value that is mapped to itself by the function. In combinatory logic for computer science, a fixed-point combinator (or fixpoint combinator) is a higher-order function \textsf that returns some fixed point of its argument function, if one exists. Formally, if the function ''f'' has one or more fixed points, then : \textsf\ f = f\ (\textsf\ f)\ , and hence, by repeated application, : \textsf\ f = f\ (f\ ( \ldots f\ (\textsf\ f) \ldots))\ . Y combinator In the classical untyped lambda calculus, every function has a fixed point. A particular implementation of fix is Curry's paradoxical combinator Y, represented by : \textsf = \lambda f. \ (\lambda x.f\ (x\ x))\ (\lambda x.f\ (x\ x))\ .Throughout this article, the syntax rules given in Lambda calculus#Notation are used, to save parentheses.For an arbitrary lambda term ''f'', the fixed-point property can be validated by beta reducing the left- an ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
B, C, K, W System
The B, C, K, W system is a variant of combinatory logic that takes as primitive the combinators B, C, K, and W. This system was discovered by Haskell Curry in his doctoral thesis ''Grundlagen der kombinatorischen Logik'', whose results are set out in Curry (1930). Definition The combinators are defined as follows: * B ''x y z'' = ''x'' (''y z'') * C ''x y z'' = ''x z y'' * K ''x y'' = ''x'' * W ''x y'' = ''x y y'' Intuitively, * B ''x y'' is the composition of ''x'' and ''y''; * C ''x'' is ''x'' with the flipped arguments order; * K ''x'' is the "constant ''x''" function, which discards the next argument; * W duplicates its second argument for the doubled application to the first. Thus, it "joins" its first argument's two expectations for input into one. Connection to other combinators In recent decades, the SKI combinator calculus, with only two primitive combinators, K and S, has become the canonical approach to combinatory logic. B, C, and W can be expressed in terms of S an ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Peirce's Law
In logic, Peirce's law is named after the philosopher and logician Charles Sanders Peirce. It was taken as an axiom in his first axiomatisation of propositional logic. It can be thought of as the law of excluded middle written in a form that involves only one sort of connective, namely implication. In propositional calculus, Peirce's law says that ((''P''→''Q'')→''P'')→''P''. Written out, this means that ''P'' must be true if there is a proposition ''Q'' such that the truth of ''P'' follows from the truth of "if ''P'' then ''Q''". In particular, when ''Q'' is taken to be a false formula, the law says that if ''P'' must be true whenever it implies falsity, then ''P'' is true. In this way Peirce's law implies the law of excluded middle. Peirce's law does not hold in intuitionistic logic or intermediate logics and cannot be deduced from the deduction theorem alone. Under the Curry–Howard isomorphism, Peirce's law is the type of continuation operators, e.g. call/ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Law Of Excluded Middle
In logic, the law of excluded middle (or the principle of excluded middle) states that for every proposition, either this proposition or its negation is true. It is one of the so-called three laws of thought, along with the law of noncontradiction, and the law of identity. However, no system of logic is built on just these laws, and none of these laws provides inference rules, such as modus ponens or De Morgan's laws. The law is also known as the law (or principle) of the excluded third, in Latin ''principium tertii exclusi''. Another Latin designation for this law is ''tertium non datur'': "no third ossibilityis given". It is a tautology. The principle should not be confused with the semantical principle of bivalence, which states that every proposition is either true or false. The principle of bivalence always implies the law of excluded middle, while the converse is not always true. A commonly cited counterexample uses statements unprovable now, but provable in the future ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Classical Logic
Classical logic (or standard logic or Frege-Russell logic) is the intensively studied and most widely used class of deductive logic. Classical logic has had much influence on analytic philosophy. Characteristics Each logical system in this class shares characteristic properties: Gabbay, Dov, (1994). 'Classical vs non-classical logic'. In D.M. Gabbay, C.J. Hogger, and J.A. Robinson, (Eds), ''Handbook of Logic in Artificial Intelligence and Logic Programming'', volume 2, chapter 2.6. Oxford University Press. # Law of excluded middle and double negation elimination # Law of noncontradiction, and the principle of explosion # Monotonicity of entailment and idempotency of entailment # Commutativity of conjunction # De Morgan duality: every logical operator is dual to another While not entailed by the preceding conditions, contemporary discussions of classical logic normally only include propositional and first-order logics. Shapiro, Stewart (2000). Classical Logic. In Stanford Encyclop ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |