SF3B4
   HOME
*





SF3B4
Splicing factor 3B subunit 4 is a protein that in humans is encoded by the ''SF3B4'' gene. Function This gene encodes one of four subunits of the splicing factor 3B. The protein encoded by this gene cross-links to a region in the pre-mRNA immediately upstream of the branchpoint sequence in pre-mRNA in the prespliceosomal complex A. It also may be involved in the assembly of the B, C and E spliceosomal complexes. In addition to RNA-binding activity, this protein interacts directly and highly specifically with subunit 2 of the splicing factor 3B. This protein contains two N-terminal RNA-recognition motifs (RRMs), consistent with the observation that it binds directly to pre-mRNA. Disease associations In 2012, Canadian researchers belonging to the FORGE (Finding of Rare disease GEnes) consortium identified new dominant mutations in ''SF3B4'' as the cause of Nager syndrome, a rare type of mandibulofacial dysostosis with associated limb malformations. Interactions SF3B4 has b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Nager Syndrome
Nager acrofacial dysostosis, also known as Nager syndrome, is a genetic disorder which displays several or all of the following characteristics: Micrognathism, underdevelopment of the cheek and jaw area, down-sloping of the opening of the human eye, eyes, lack or absence of the lower eyelashes, kidney or stomach Gastric reflux, reflux, hammer toes, shortened soft palate, lack of development of the Inner ear, internal and external ear, possible cleft palate, underdevelopment or absence of the thumb, hearing loss (see hearing loss with craniofacial syndromes) and shortened forearms, as well as poor movement in the Elbow-joint, elbow, and may be characterized by accessory Tragus (ear), tragi. Occasionally, affected individuals develop vertebral anomalies such as scoliosis. The inheritance pattern is autosomal, but there are arguments as to whether it is autosomal dominant or autosomal recessive. Most cases tend to be sporadic. Nager syndrome shares many characteristics with five other ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


CDC5L
Cell division cycle 5-like protein is a protein that in humans is encoded by the ''CDC5L'' gene. Function The protein encoded by this gene shares a significant similarity with ''Schizosaccharomyces pombe'' cdc5 gene product, which is a cell cycle regulator important for G2/ M transition. This protein has been demonstrated to act as a positive regulator of cell cycle G2/M progression. It was also found to be an essential component of a non-snRNA spliceosome, which contains at least five additional protein factors and is required for the second catalytic step of pre-mRNA splicing. Interactions CDC5L has been shown to interact with: * ASF/SF2, * BZW1, * CWC15, * DNA-PKcs, * DYNC1H1, * GCN1L1, * HSPA8, * ILF2, * PLRG1, * PPM1D, * PPP1CA, * PRPF19, * RBMX and * RPL12, * RPL13, * RPS16, * RPS25, * SF3A1, * SF3B1, * SF3B2, * SF3B4, * SFPQ, * SFRS2, * SNRPA1, * SNRPD3, * SRRM1, * Small nuclear ribonucleoprotein D1, * Small nuclear ribonucleoprotein D2, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


BMPR1A
The bone morphogenetic protein receptor, type IA also known as BMPR1A is a protein which in humans is encoded by the ''BMPR1A'' gene. BMPR1A has also been designated as CD292 (cluster of differentiation 292). Function The bone morphogenetic protein (BMP) receptors are a family of transmembrane serine/threonine kinases that include the type I receptors BMPR1A (this protein) and BMPR1B and the type II receptor BMPR2. These receptors are also closely related to the activin receptors, ACVR1 and ACVR2. The ligands of these receptors are members of the TGF beta superfamily. TGF-betas and activins transduce their signals through the formation of heterodimeric complexes with 2 different types of serine (threonine) kinase receptors: type I receptors of about 50-55 kD and type II receptors of about 70-80 kD. Type II receptors bind ligands in the absence of type I receptors, but they require their respective type I receptors for signaling, whereas type I receptors require their respective ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Protein
Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, responding to stimuli, providing structure to cells and organisms, and transporting molecules from one location to another. Proteins differ from one another primarily in their sequence of amino acids, which is dictated by the nucleotide sequence of their genes, and which usually results in protein folding into a specific 3D structure that determines its activity. A linear chain of amino acid residues is called a polypeptide. A protein contains at least one long polypeptide. Short polypeptides, containing less than 20–30 residues, are rarely considered to be proteins and are commonly called peptides. The individual amino acid residues are bonded together by peptide bonds and adjacent amino acid residues. The sequence of amino acid residue ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gene
In biology, the word gene (from , ; "...Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''generation'' or ''birth'' or ''gender'') can have several different meanings. The Mendelian gene is a basic unit of heredity and the molecular gene is a sequence of nucleotides in DNA that is transcribed to produce a functional RNA. There are two types of molecular genes: protein-coding genes and noncoding genes. During gene expression, the DNA is first copied into RNA. The RNA can be directly functional or be the intermediate template for a protein that performs a function. The transmission of genes to an organism's offspring is the basis of the inheritance of phenotypic traits. These genes make up different DNA sequences called genotypes. Genotypes along with environmental and developmental factors determine what the phenotypes will be. Most biological traits are under the influence of polygenes (many different genes) as well as gen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]