Riemann–Hilbert Problem
   HOME
*





Riemann–Hilbert Problem
In mathematics, Riemann–Hilbert problems, named after Bernhard Riemann and David Hilbert, are a class of problems that arise in the study of differential equations in the complex plane. Several existence theorems for Riemann–Hilbert problems have been produced by Mark Krein, Israel Gohberg and others (see the book by Clancey and Gohberg (1981)). The Riemann problem Suppose that \Sigma is a closed simple contour in the complex plane dividing the plane into two parts denoted by \Sigma_ (the inside) and \Sigma_ (the outside), determined by the index of the contour with respect to a point. The classical problem, considered in Riemann's PhD dissertation (see ), was that of finding a function :M_+(z) = u(z) + i v(z) analytic inside \Sigma_ such that the boundary values of ''M''+ along \Sigma satisfy the equation :a(z)u(z) - b(z)v(z) = c(z) for all z\in \Sigma, where ''a'', ''b'', and ''c'' are given real-valued functions . By the Riemann mapping theorem, it suffices to consider ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Painlevé Equations
Painlevé, a surname, may refer to: __NOTOC__ People * Jean Painlevé (1902–1989), French film director, actor, translator, animator, son Paul * Paul Painlevé (1863–1933), French mathematician and politician, twice Prime Minister of France Mathematics * Painlevé conjecture, a conjecture about singularities in the n-body problem by Paul Painlevé * Painlevé paradox, a paradox in rigid-body dynamics by Paul Painlevé * Painlevé transcendents In mathematics, Painlevé transcendents are solutions to certain nonlinear second-order ordinary differential equations in the complex plane with the Painlevé property (the only movable singularities are poles), but which are not generally solvabl ..., ordinary differential equation solutions discovered by Paul Painlevé Other * French aircraft carrier ''Painlevé'', a planned ship named in honor of Paul Painlevé {{DEFAULTSORT:Painleve ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Riemann–Roch Theorem
The Riemann–Roch theorem is an important theorem in mathematics, specifically in complex analysis and algebraic geometry, for the computation of the dimension of the space of meromorphic functions with prescribed zeros and allowed poles. It relates the complex analysis of a connected compact Riemann surface with the surface's purely topological genus ''g'', in a way that can be carried over into purely algebraic settings. Initially proved as Riemann's inequality by , the theorem reached its definitive form for Riemann surfaces after work of Riemann's short-lived student . It was later generalized to algebraic curves, to higher-dimensional varieties and beyond. Preliminary notions A Riemann surface X is a topological space that is locally homeomorphic to an open subset of \Complex, the set of complex numbers. In addition, the transition maps between these open subsets are required to be holomorphic. The latter condition allows one to transfer the notions and methods of complex ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Meromorphic Function
In the mathematical field of complex analysis, a meromorphic function on an open subset ''D'' of the complex plane is a function that is holomorphic on all of ''D'' ''except'' for a set of isolated points, which are pole (complex analysis), poles of the function. The term comes from the Greek ''meros'' ( μέρος), meaning "part". Every meromorphic function on ''D'' can be expressed as the ratio between two holomorphic functions (with the denominator not constant 0) defined on ''D'': any pole must coincide with a zero of the denominator. Heuristic description Intuitively, a meromorphic function is a ratio of two well-behaved (holomorphic) functions. Such a function will still be well-behaved, except possibly at the points where the denominator of the fraction is zero. If the denominator has a zero at ''z'' and the numerator does not, then the value of the function will approach infinity; if both parts have a zero at ''z'', then one must compare the multiplicity of these zero ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Riemann Surface
In mathematics, particularly in complex analysis, a Riemann surface is a connected one-dimensional complex manifold. These surfaces were first studied by and are named after Bernhard Riemann. Riemann surfaces can be thought of as deformed versions of the complex plane: locally near every point they look like patches of the complex plane, but the global topology can be quite different. For example, they can look like a sphere or a torus or several sheets glued together. The main interest in Riemann surfaces is that holomorphic functions may be defined between them. Riemann surfaces are nowadays considered the natural setting for studying the global behavior of these functions, especially multi-valued functions such as the square root and other algebraic functions, or the logarithm. Every Riemann surface is a two-dimensional real analytic manifold (i.e., a surface), but it contains more structure (specifically a complex structure) which is needed for the unambiguous definitio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Self-adjoint
In mathematics, and more specifically in abstract algebra, an element ''x'' of a *-algebra is self-adjoint if x^*=x. A self-adjoint element is also Hermitian, though the reverse doesn't necessarily hold. A collection ''C'' of elements of a star-algebra is self-adjoint if it is closed under the involution operation. For example, if x^*=y then since y^*=x^=x in a star-algebra, the set is a self-adjoint set even though ''x'' and ''y'' need not be self-adjoint elements. In functional analysis, a linear operator A : H \to H on a Hilbert space is called self-adjoint if it is equal to its own adjoint ''A''. See self-adjoint operator for a detailed discussion. If the Hilbert space is finite-dimensional and an orthonormal basis has been chosen, then the operator ''A'' is self-adjoint if and only if the matrix describing ''A'' with respect to this basis is Hermitian, i.e. if it is equal to its own conjugate transpose. Hermitian matrices are also called self-adjoint. In a dagger categor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lax Pair
In mathematics, in the theory of integrable systems, a Lax pair is a pair of time-dependent matrices or operators that satisfy a corresponding differential equation, called the ''Lax equation''. Lax pairs were introduced by Peter Lax to discuss solitons in continuous media. The inverse scattering transform makes use of the Lax equations to solve such systems. Definition A Lax pair is a pair of matrices or operators L(t), P(t) dependent on time and acting on a fixed Hilbert space, and satisfying Lax's equation: :\frac= ,L/math> where ,LPL-LP is the commutator. Often, as in the example below, P depends on L in a prescribed way, so this is a nonlinear equation for L as a function of t. Isospectral property It can then be shown that the eigenvalues and more generally the spectrum of ''L'' are independent of ''t''. The matrices/operators ''L'' are said to be ''isospectral'' as t varies. The core observation is that the matrices L(t) are all similar by virtue of :L(t)=U(t,s) L( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cauchy Kernel
In mathematics, Cauchy's integral formula, named after Augustin-Louis Cauchy, is a central statement in complex analysis. It expresses the fact that a holomorphic function defined on a disk is completely determined by its values on the boundary of the disk, and it provides integral formulas for all derivatives of a holomorphic function. Cauchy's formula shows that, in complex analysis, "differentiation is equivalent to integration": complex differentiation, like integration, behaves well under uniform limits – a result that does not hold in real analysis. Theorem Let be an open subset of the complex plane , and suppose the closed disk defined as :D = \bigl\ is completely contained in . Let be a holomorphic function, and let be the circle, oriented counterclockwise, forming the boundary of . Then for every in the interior of , :f(a) = \frac \oint_\gamma \frac\,dz.\, The proof of this statement uses the Cauchy integral theorem and like that theorem, it only requires t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Method Of Steepest Descent
In mathematics, the method of steepest descent or saddle-point method is an extension of Laplace's method for approximating an integral, where one deforms a contour integral in the complex plane to pass near a stationary point (saddle point), in roughly the direction of steepest descent or stationary phase. The saddle-point approximation is used with integrals in the complex plane, whereas Laplace’s method is used with real integrals. The integral to be estimated is often of the form :\int_Cf(z)e^\,dz, where ''C'' is a contour, and λ is large. One version of the method of steepest descent deforms the contour of integration ''C'' into a new path integration ''C′'' so that the following conditions hold: # ''C′'' passes through one or more zeros of the derivative ''g''′(''z''), # the imaginary part of ''g''(''z'') is constant on ''C′''. The method of steepest descent was first published by , who used it to estimate Bessel functions and pointed out that it occurred in the u ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Method Of Stationary Phase
In mathematics, the stationary phase approximation is a basic principle of asymptotic analysis, applying to the limit as k \to \infty . This method originates from the 19th century, and is due to George Gabriel Stokes and Lord Kelvin. It is closely related to Laplace's method and the method of steepest descent, but Laplace's contribution precedes the others. Basics The main idea of stationary phase methods relies on the cancellation of sinusoids with rapidly varying phase. If many sinusoids have the same phase and they are added together, they will add constructively. If, however, these same sinusoids have phases which change rapidly as the frequency changes, they will add incoherently, varying between constructive and destructive addition at different times. Formula Letting \Sigma denote the set of critical points of the function f (i.e. points where \nabla f =0), under the assumption that g is either compactly supported or has exponential decay, and that all critical p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Partial Differential Equation
In mathematics, a partial differential equation (PDE) is an equation which imposes relations between the various partial derivatives of a Multivariable calculus, multivariable function. The function is often thought of as an "unknown" to be solved for, similarly to how is thought of as an unknown number to be solved for in an algebraic equation like . However, it is usually impossible to write down explicit formulas for solutions of partial differential equations. There is, correspondingly, a vast amount of modern mathematical and scientific research on methods to Numerical methods for partial differential equations, numerically approximate solutions of certain partial differential equations using computers. Partial differential equations also occupy a large sector of pure mathematics, pure mathematical research, in which the usual questions are, broadly speaking, on the identification of general qualitative features of solutions of various partial differential equations, such a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]