HOME
*





Rossby Parameter
The Rossby parameter (or simply beta \beta) is a number used in geophysics and meteorology which arises due to the meridional variation of the Coriolis force caused by the spherical shape of the Earth. It is important in the generation of Rossby waves. The Rossby parameter \beta is given byLecture Notes
for Atmospheric Science Mesoscale Dynamics (MEA 713). North Carolina State University. Accessed 14 July 2007. :\beta = \frac = \frac \frac (2 \omega \sin\phi) = \frac where f is the , \phi is the latitude, \omega
[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Geophysics
Geophysics () is a subject of natural science concerned with the physical processes and physical properties of the Earth and its surrounding space environment, and the use of quantitative methods for their analysis. The term ''geophysics'' sometimes refers only to solid earth applications: Earth's shape; its gravitational and magnetic fields; its internal structure and composition; its dynamics and their surface expression in plate tectonics, the generation of magmas, volcanism and rock formation. However, modern geophysics organizations and pure scientists use a broader definition that includes the water cycle including snow and ice; fluid dynamics of the oceans and the atmosphere; electricity and magnetism in the ionosphere and magnetosphere and solar-terrestrial physics; and analogous problems associated with the Moon and other planets. Gutenberg, B., 1929, Lehrbuch der Geophysik. Leipzig. Berlin (Gebruder Borntraeger). Runcorn, S.K, (editor-in-chief), 1967, International ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Meteorology
Meteorology is a branch of the atmospheric sciences (which include atmospheric chemistry and physics) with a major focus on weather forecasting. The study of meteorology dates back millennia, though significant progress in meteorology did not begin until the 18th century. The 19th century saw modest progress in the field after weather observation networks were formed across broad regions. Prior attempts at prediction of weather depended on historical data. It was not until after the elucidation of the laws of physics, and more particularly in the latter half of the 20th century the development of the computer (allowing for the automated solution of a great many modelling equations) that significant breakthroughs in weather forecasting were achieved. An important branch of weather forecasting is marine weather forecasting as it relates to maritime and coastal safety, in which weather effects also include atmospheric interactions with large bodies of water. Meteorological pheno ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Coriolis Force
In physics, the Coriolis force is an inertial or fictitious force that acts on objects in motion within a frame of reference that rotates with respect to an inertial frame. In a reference frame with clockwise rotation, the force acts to the left of the motion of the object. In one with anticlockwise (or counterclockwise) rotation, the force acts to the right. Deflection of an object due to the Coriolis force is called the Coriolis effect. Though recognized previously by others, the mathematical expression for the Coriolis force appeared in an 1835 paper by French scientist Gaspard-Gustave de Coriolis, in connection with the theory of water wheels. Early in the 20th century, the term ''Coriolis force'' began to be used in connection with meteorology. Newton's laws of motion describe the motion of an object in an inertial (non-accelerating) frame of reference. When Newton's laws are transformed to a rotating frame of reference, the Coriolis and centrifugal accelerations appe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rossby Waves
Rossby waves, also known as planetary waves, are a type of inertial wave naturally occurring in rotating fluids. They were first identified by Sweden-born American meteorologist Carl-Gustaf Arvid Rossby. They are observed in the atmospheres and oceans of planets owing to the rotation of the planet. Atmospheric Rossby waves on Earth are giant meanders in high-altitude winds that have a major influence on weather. These waves are associated with pressure systems and the jet stream (especially around the polar vortices). Oceanic Rossby waves move along the thermocline: the boundary between the warm upper layer and the cold deeper part of the ocean. Rossby wave types Atmospheric waves Atmospheric Rossby waves result from the conservation of potential vorticity and are influenced by the Coriolis force and pressure gradient. The rotation causes fluids to turn to the right as they move in the northern hemisphere and to the left in the southern hemisphere. For example, a fluid that ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

North Carolina State University
North Carolina State University (NC State) is a public land-grant research university in Raleigh, North Carolina. Founded in 1887 and part of the University of North Carolina system, it is the largest university in the Carolinas. The university forms one of the corners of the Research Triangle together with Duke University in Durham and the University of North Carolina at Chapel Hill. It is classified among "R1: Doctoral Universities – Very high research activity". The North Carolina General Assembly established the North Carolina College of Agriculture and Mechanic Arts, now NC State, on March 7, 1887, originally as a land-grant college. The college underwent several name changes and officially became North Carolina State University at Raleigh in 1965. However, by longstanding convention, the "at Raleigh" portion is usually omitted. Today, NC State has an enrollment of more than 35,000 students, making it among the largest in the country. NC State has historical strengths ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Coriolis Parameter
The Coriolis frequency ''ƒ'', also called the Coriolis parameter or Coriolis coefficient, is equal to twice the rotation rate ''Ω'' of the Earth multiplied by the sine of the latitude \varphi. :f = 2 \Omega \sin \varphi.\, The rotation rate of the Earth (''Ω'' = 7.2921 × 10−5 rad/s) can be calculated as 2''π'' / ''T'' radians per second, where ''T'' is the rotation period of the Earth which is one ''sidereal'' day (23 h 56 min 4.1 s). In the midlatitudes, the typical value for f is about 10−4 rad/s. Inertial oscillations on the surface of the earth have this frequency. These oscillations are the result of the Coriolis effect. Explanation Consider a body (for example a fixed volume of atmosphere) moving along at a given latitude \varphi at velocity v in the earth's rotating reference frame. In the local reference frame of the body, the vertical direction is parallel to the radial vector point ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Derivative
In mathematics, the derivative of a function of a real variable measures the sensitivity to change of the function value (output value) with respect to a change in its argument (input value). Derivatives are a fundamental tool of calculus. For example, the derivative of the position of a moving object with respect to time is the object's velocity: this measures how quickly the position of the object changes when time advances. The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point. The tangent line is the best linear approximation of the function near that input value. For this reason, the derivative is often described as the "instantaneous rate of change", the ratio of the instantaneous change in the dependent variable to that of the independent variable. Derivatives can be generalized to functions of several real variables. In this generalization, the derivativ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rossby Number
The Rossby number (Ro), named for Carl-Gustav Arvid Rossby, is a dimensionless number used in describing fluid flow. The Rossby number is the ratio of inertial force to Coriolis force, terms , \mathbf \cdot \nabla \mathbf, \sim U^2 / L and \Omega \times \mathbf \sim U\Omega in the Navier–Stokes equations respectively. It is commonly used in geophysical phenomena in the oceans and atmosphere, where it characterizes the importance of Coriolis accelerations arising from planetary rotation. It is also known as the Kibel number. The Rossby number (Ro, not Ro) is defined as : \text = \frac, where ''U'' and ''L'' are respectively characteristic velocity and length scales of the phenomenon, and f = 2\Omega \sin \phi is the Coriolis frequency, with \Omega being the angular frequency of planetary rotation, and \phi the latitude. A small Rossby number signifies a system strongly affected by Coriolis forces, and a large Rossby number signifies a system in which inertial and centrifugal f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Beta Plane
In geophysical fluid dynamics, an approximation whereby the Coriolis parameter, ''f'', is set to vary linearly in space is called a beta plane approximation. On a rotating sphere such as the Earth, ''f'' varies with the sine of latitude; in the so-called f-plane approximation, this variation is ignored, and a value of ''f'' appropriate for a particular latitude is used throughout the domain. This approximation can be visualized as a tangent plane touching the surface of the sphere at this latitude. A more accurate model is a linear Taylor series approximation to this variability about a given latitude \phi_0: f = f_0 + \beta y, where f_0 is the Coriolis parameter at \phi_0, \beta = (\mathrmf/\mathrmy), _ = 2\Omega\cos(\phi_0)/a is the Rossby parameter, y is the meridional distance from \phi_0, \Omega is the angular rotation rate of the Earth, and a is the Earth's radius. In analogy with the f-plane, this approximation is termed the beta plane, even though it no longer describes d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]