Riesz Rearrangement Inequality
In mathematics, the Riesz rearrangement inequality, sometimes called Riesz–Sobolev inequality, states that any three non-negative functions f : \mathbb^n \to \mathbb^+, g : \mathbb^n \to \mathbb^+ and h : \mathbb^n \to \mathbb^+ satisfy the inequality :\iint_ f(x) g(x-y) h(y) \, dx\,dy \le \iint_ f^*(x) g^*(x-y) h^*(y) \, dx\,dy, where f^* : \mathbb^n \to \mathbb^+, g^* : \mathbb^n \to \mathbb^+ and h^* : \mathbb^n \to \mathbb^+ are the symmetric decreasing rearrangements of the functions f, g and h respectively. History The inequality was first proved by Frigyes Riesz in 1930, and independently reproved by S.L.Sobolev in 1938. Brascamp, Lieb and Luttinger have shown that can be generalized to arbitrarily (but finitely) many functions acting on arbitrarily many variables. Applications The Riesz rearrangement inequality can be used to prove the Pólya–Szegő inequality. Proofs One-dimensional case In the one-dimensional case, the inequality is first proved when th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Symmetric Decreasing Rearrangement
In mathematics, the symmetric decreasing rearrangement of a function is a function which is symmetric and decreasing, and whose level sets are of the same size as those of the original function. Definition for sets Given a measurable set, A, in \R^n, one defines the ''symmetric rearrangement'' of A, called A^*, as the ball centered at the origin, whose volume (Lebesgue measure) is the same as that of the set A. An equivalent definition is A^* = \left\, where \omega_n is the volume of the unit ball and where , A, is the volume of A. Definition for functions The rearrangement of a non-negative, measurable real-valued function f whose level sets f^(y) (for y \in \R_) have finite measure is f^*(x) = \int_0^\infty \mathbb_(x) \, dt, where \mathbb_A denotes the indicator function of the set A. In words, the value of f^*(x) gives the height t for which the radius of the symmetric rearrangement of \ is equal to x. We have the following motivation for this definition. Because the iden ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Frigyes Riesz
Frigyes Riesz ( hu, Riesz Frigyes, , sometimes spelled as Frederic; 22 January 1880 – 28 February 1956) was a HungarianEberhard Zeidler: Nonlinear Functional Analysis and Its Applications: Linear monotone operators. Springer, 199/ref> mathematician who made fundamental contributions to functional analysis, as did his younger brother Marcel Riesz. Life and career He was born into a Jewish family in Győr, Austria-Hungary and died in Budapest, Hungary. Between 1911 and 1919 he was a professor at the Franz Joseph University in Kolozsvár, Austria-Hungary. The post-WW1 Treaty of Trianon transferred former Austro-Hungarian territory including Kolozsvár to the Kingdom of Romania, whereupon Kolozsvár's name changed to Cluj and the University of Kolozsvár moved to Szeged, Hungary, becoming the University of Szeged. Then, Riesz was the rector and a professor at the University of Szeged, as well as a member of the Hungarian Academy of Sciences. and the Polish Academy of Learning. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Journal Of The London Mathematical Society
The London Mathematical Society (LMS) is one of the United Kingdom's learned societies for mathematics (the others being the Royal Statistical Society (RSS), the Institute of Mathematics and its Applications (IMA), the Edinburgh Mathematical Society and the Operational Research Society (ORS). History The Society was established on 16 January 1865, the first president being Augustus De Morgan. The earliest meetings were held in University College, but the Society soon moved into Burlington House, Piccadilly. The initial activities of the Society included talks and publication of a journal. The LMS was used as a model for the establishment of the American Mathematical Society in 1888. Mary Cartwright was the first woman to be President of the LMS (in 1961–62). The Society was granted a royal charter in 1965, a century after its foundation. In 1998 the Society moved from rooms in Burlington House into De Morgan House (named after the society's first president), at 57–5 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Elliott Lieb
Elliott Hershel Lieb (born July 31, 1932) is an American mathematical physicist and professor of mathematics and physics at Princeton University who specializes in statistical mechanics, condensed matter theory, and functional analysis. Lieb is a prolific author, with over 400 publications both in physics and mathematics. In particular, his scientific works pertain to quantum and classical many-body problem, atomic structure, the stability of matter, functional inequalities, the theory of magnetism, and the Hubbard model. Biography He received his B.S. in physics from the Massachusetts Institute of Technology in 1953 and his PhD in mathematical physics from the University of Birmingham in England in 1956. Lieb was a Fulbright Fellow at Kyoto University, Japan (1956–1957), and worked as the Staff Theoretical Physicist for IBM from 1960 to 1963. In 1961–1962, Lieb was on leave as professor of applied mathematics at Fourah Bay College, the University of Sierra Leone. He has ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Pólya–Szegő Inequality
In mathematical analysis, the Pólya–Szegő inequality (or Szegő inequality) states that the Sobolev energy of a function in a Sobolev space does not increase under symmetric decreasing rearrangement. The inequality is named after the mathematicians George Pólya and Gábor Szegő. Mathematical setting and statement Given a Lebesgue measurable function u:\R^n\to \R^+,the symmetric decreasing rearrangement u^*:\R^n\to \R^+, is the unique function such that for every t \in \R, the sublevel set u^*^((t, +\infty)) is an open ball centred at the origin 0 \in \R^n that has the same Lebesgue measure as u^((t, +\infty)). Equivalently, u^* is the unique radial and radially nonincreasing function, whose strict sublevel sets are open and have the same measure as those of the function u. The Pólya–Szegő inequality states that if moreover u \in W^(\R^n), then u^* \in W^(\R^n) and : \int_ , \nabla u^*, ^p \leq \int_ , \nabla u, ^p. Applications of the inequality The Pólya–S ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Characteristic Function
In mathematics, the term "characteristic function" can refer to any of several distinct concepts: * The indicator function of a subset, that is the function ::\mathbf_A\colon X \to \, :which for a given subset ''A'' of ''X'', has value 1 at points of ''A'' and 0 at points of ''X'' − ''A''. * There is an indicator function for affine varieties over a finite field: given a finite set of functions f_\alpha \in \mathbb_q _1,\ldots,x_n/math> let V = \left\ be their vanishing locus. Then, the function P(x) = \prod\left(1 - f_\alpha(x)^\right) acts as an indicator function for V. If x \in V then P(x) = 1, otherwise, for some f_\alpha, we have f_\alpha(x) \neq 0, which implies that f_\alpha(x)^ = 1, hence P(x) = 0. * The characteristic function in convex analysis, closely related to the indicator function of a set: *:\chi_A (x) := \begin 0, & x \in A; \\ + \infty, & x \not \in A. \end * In probability theory, the characteristic function of any probability distribution on the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
American Mathematical Society
The American Mathematical Society (AMS) is an association of professional mathematicians dedicated to the interests of mathematical research and scholarship, and serves the national and international community through its publications, meetings, advocacy and other programs. The society is one of the four parts of the Joint Policy Board for Mathematics and a member of the Conference Board of the Mathematical Sciences. History The AMS was founded in 1888 as the New York Mathematical Society, the brainchild of Thomas Fiske, who was impressed by the London Mathematical Society on a visit to England. John Howard Van Amringe was the first president and Fiske became secretary. The society soon decided to publish a journal, but ran into some resistance, due to concerns about competing with the American Journal of Mathematics. The result was the ''Bulletin of the American Mathematical Society'', with Fiske as editor-in-chief. The de facto journal, as intended, was influential in in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Graduate Studies In Mathematics
Graduate Studies in Mathematics (GSM) is a series of graduate-level textbooks in mathematics published by the American Mathematical Society (AMS). The books in this series are published ihardcoverane-bookformats. List of books *1 ''The General Topology of Dynamical Systems'', Ethan Akin (1993, ) *2 ''Combinatorial Rigidity'', Jack Graver, Brigitte Servatius, Herman Servatius (1993, ) *3 ''An Introduction to Gröbner Bases'', William W. Adams, Philippe Loustaunau (1994, ) *4 ''The Integrals of Lebesgue, Denjoy, Perron, and Henstock'', Russell A. Gordon (1994, ) *5 ''Algebraic Curves and Riemann Surfaces'', Rick Miranda (1995, ) *6 ''Lectures on Quantum Groups'', Jens Carsten Jantzen (1996, ) *7 ''Algebraic Number Fields'', Gerald J. Janusz (1996, 2nd ed., ) *8 ''Discovering Modern Set Theory. I: The Basics'', Winfried Just, Martin Weese (1996, ) *9 ''An Invitation to Arithmetic Geometry'', Dino Lorenzini (1996, ) *10 ''Representations of Finite and Compact Groups'', Barry Simon (199 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Inequalities
Inequality may refer to: Economics * Attention inequality, unequal distribution of attention across users, groups of people, issues in etc. in attention economy * Economic inequality, difference in economic well-being between population groups * Spatial inequality, the unequal distribution of income and resources across geographical regions * Income inequality metrics, used to measure income and economic inequality among participants in a particular economy * International inequality, economic differences between countries Healthcare * Health equity, the study of differences in the quality of health and healthcare across different populations Mathematics * Inequality (mathematics), a relation between two values when they are different Social sciences * Educational inequality, the unequal distribution of academic resources to socially excluded communities * Gender inequality, unequal treatment or perceptions of individuals due to their gender * Participation inequality, the pheno ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Rearrangement Inequalities s
{{Disambiguation ...
Rearrangement may refer to: Chemistry * Rearrangement reaction Mathematics * Rearrangement inequality * The Riemann rearrangement theorem, also called the Riemann series theorem ** see also Lévy–Steinitz theorem * A permutation of the terms of a conditionally convergent series Genetics * Chromosomal rearrangements, such as: ** Translocations ** Ring chromosomes ** Chromosomal inversion An inversion is a chromosome rearrangement in which a segment of a chromosome becomes inverted within its original position. An inversion occurs when a chromosome undergoes a two breaks within the chromosomal arm, and the segment between the two br ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |