Riesel Problem
In mathematics, a Riesel number is an odd natural number ''k'' for which k\times2^n-1 is composite for all natural numbers ''n'' . In other words, when ''k'' is a Riesel number, all members of the following set are composite: :\left\. If the form is instead k\times2^n+1, then ''k'' is a Sierpinski number. Riesel Problem In 1956, Hans Riesel showed that there are an infinite number of integers ''k'' such that k\times2^n-1 is not prime for any integer ''n''. He showed that the number 509203 has this property, as does 509203 plus any positive integer multiple of 11184810. The Riesel problem consists in determining the smallest Riesel number. Because no covering set has been found for any ''k'' less than 509203, it is conjectured to be the smallest Riesel number. To check if there are ''k'' ''k'') :2, 3, 3, 39, 4, 4, 4, 5, 6, 5, 5, 6, 5, 5, 5, 7, 6, 6, 11, 7, 6, 29, 6, 6, 7, 6, 6, 7, 6, 6, 6, 8, 8, 7, 7, 10, 9, 7, 8, 9, 7, 8, 7, 7, 8, 7, 8, 10, 7, 7, 26, 9, 7, 8, 7, 7, 10, 7 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Riesel Sieve
Riesel Sieve was a volunteer computing project, running in part on the BOINC platform. Its aim was to prove that 509,203 is the smallest Riesel number, by finding a prime of the form for all odd smaller than 509,203. Progress At the start of the project in August 2003, there were less than 509,203 for which no prime was known. , 52 of these had been eliminated by Riesel Sieve or outside persons; the largest prime found by this project is 502,573 × 27,181,987 − 1 of 2,162,000 digits, and it is known that for none of the remaining there is a prime with ''n'' <= 10,000,000 (As of February 2020). The project proceeds in the same way as other prime-hunting projects like or : sieving eliminates pairs (''k'', ''n'') wi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Analytic Number Theory
In mathematics, analytic number theory is a branch of number theory that uses methods from mathematical analysis to solve problems about the integers. It is often said to have begun with Peter Gustav Lejeune Dirichlet's 1837 introduction of Dirichlet ''L''-functions to give the first proof of Dirichlet's theorem on arithmetic progressions. It is well known for its results on prime numbers (involving the Prime Number Theorem and Riemann zeta function) and additive number theory (such as the Goldbach conjecture and Waring's problem). Branches of analytic number theory Analytic number theory can be split up into two major parts, divided more by the type of problems they attempt to solve than fundamental differences in technique. *Multiplicative number theory deals with the distribution of the prime numbers, such as estimating the number of primes in an interval, and includes the prime number theorem and Dirichlet's theorem on primes in arithmetic progressions. *Additive number th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Springer-Verlag
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second largest academic publisher with 65 staff in 1872.Chronology ". Springer Science+Business Media. In 1964, Springer expanded its business internationally, o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
BOINC
The Berkeley Open Infrastructure for Network Computing (BOINC, pronounced – rhymes with "oink") is an open-source middleware system for volunteer computing (a type of distributed computing). Developed originally to support SETI@home, it became the platform for many other applications in areas as diverse as medicine, molecular biology, mathematics, linguistics, climatology, environmental science, and astrophysics, among others. The purpose of BOINC is to enable researchers to utilize processing resources of personal computers and other devices around the world. BOINC development began with a group based at the Space Sciences Laboratory (SSL) at the University of California, Berkeley, and led by David P. Anderson, who also led SETI@home. As a high-performance volunteer computing platform, BOINC brings together 34,236 active participants employing 136,341 active computers (hosts) worldwide, processing daily on average 20.164 PetaFLOPS (it would be the 21st largest processin ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Experimental Mathematics
Experimental mathematics is an approach to mathematics in which computation is used to investigate mathematical objects and identify properties and patterns. It has been defined as "that branch of mathematics that concerns itself ultimately with the codification and transmission of insights within the mathematical community through the use of experimental (in either the Galilean, Baconian, Aristotelian or Kantian sense) exploration of conjectures and more informal beliefs and a careful analysis of the data acquired in this pursuit." As expressed by Paul Halmos: "Mathematics is not a deductive science—that's a cliché. When you try to prove a theorem, you don't just list the hypotheses, and then start to reason. What you do is trial and error, experimentation, guesswork. You want to find out what the facts are, and what you do is in that respect similar to what a laboratory technician does." History Mathematicians have always practiced experimental mathematics. Existing records of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Woodall Number
In number theory, a Woodall number (''W''''n'') is any natural number of the form :W_n = n \cdot 2^n - 1 for some natural number ''n''. The first few Woodall numbers are: :1, 7, 23, 63, 159, 383, 895, … . History Woodall numbers were first studied by Allan J. C. Cunningham and H. J. Woodall in 1917, inspired by James Cullen's earlier study of the similarly defined Cullen numbers. Woodall primes Woodall numbers that are also prime numbers are called Woodall primes; the first few exponents ''n'' for which the corresponding Woodall numbers ''W''''n'' are prime are 2, 3, 6, 30, 75, 81, 115, 123, 249, 362, 384, ... ; the Woodall primes themselves begin with 7, 23, 383, 32212254719, ... . In 1976 Christopher Hooley showed that almost all Cullen numbers are composite. In October 1995, Wilfred Keller published a paper discussing several new Cullen primes and the efforts made to factorise other Cullen and Woodall numbers. Included in that paper is a personal communication to Kel ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Greatest Common Divisor
In mathematics, the greatest common divisor (GCD) of two or more integers, which are not all zero, is the largest positive integer that divides each of the integers. For two integers ''x'', ''y'', the greatest common divisor of ''x'' and ''y'' is denoted \gcd (x,y). For example, the GCD of 8 and 12 is 4, that is, \gcd (8, 12) = 4. In the name "greatest common divisor", the adjective "greatest" may be replaced by "highest", and the word "divisor" may be replaced by "factor", so that other names include highest common factor (hcf), etc. Historically, other names for the same concept have included greatest common measure. This notion can be extended to polynomials (see Polynomial greatest common divisor) and other commutative rings (see below). Overview Definition The ''greatest common divisor'' (GCD) of two nonzero integers and is the greatest positive integer such that is a divisor of both and ; that is, there are integers and such that and , and is the largest s ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Sierpiński Number
In number theory, a Sierpiński number is an odd natural number ''k'' such that k \times 2^n + 1 is composite for all natural numbers ''n''. In 1960, Wacław Sierpiński proved that there are infinitely many odd integers ''k'' which have this property. In other words, when ''k'' is a Sierpiński number, all members of the following set are composite: :\left\. If the form is instead k \times 2^n - 1 , then ''k'' is a Riesel number. Known Sierpiński numbers The sequence of currently ''known'' Sierpiński numbers begins with: : 78557, 271129, 271577, 322523, 327739, 482719, 575041, 603713, 903983, 934909, 965431, 1259779, 1290677, 1518781, 1624097, 1639459, 1777613, 2131043, 2131099, 2191531, 2510177, 2541601, 2576089, 2931767, 2931991, ... . The number 78557 was proved to be a Sierpiński number by John Selfridge in 1962, who showed that all numbers of the form have a factor in the covering set . For another known Sierpiński number, 271129, the covering set is . Most current ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
PrimeGrid
PrimeGrid is a volunteer computing project that searches for very large (up to world-record size) prime numbers whilst also aiming to solve long-standing mathematical conjectures. It uses the Berkeley Open Infrastructure for Network Computing (BOINC) platform. PrimeGrid offers a number of subprojects for prime-number sieving and discovery. Some of these are available through the BOINC client, others through the PRPNet client. Some of the work is manual, i.e. it requires manually starting work units and uploading results. Different subprojects may run on different operating systems, and may have executables for CPUs, GPUs, or both; while running the Lucas–Lehmer–Riesel test, CPUs with Advanced Vector Extensions and Fused Multiply-Add instruction sets will yield the fastest results for non-GPU accelerated workloads. PrimeGrid awards badges to users in recognition of achieving certain defined levels of credit for work done. The badges have no intrinsic value but are valued by ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Seventeen Or Bust
Seventeen or Bust was a volunteer computing project started in March 2002 to solve the last seventeen cases in the Sierpinski problem. The project solved eleven cases before a server loss in April 2016 forced it to cease operations. Work on the Sierpinski problem moved to PrimeGrid, which solved a twelfth case in October 2016. Five cases remain unsolved . Goals The goal of the project was to prove that 78557 is the smallest Sierpinski number, that is, the least odd ''k'' such that ''k''·2''n''+1 is composite (i.e. not prime) for all ''n'' > 0. When the project began, there were only seventeen values of ''k'' 0 (or else ''k'' has algebraic factorizations for some ''n'' values and a finite prime set that works only for the remaining ''n''). For example, for the smallest known Sierpinski number, 78557, the covering set is . For another known Sierpinski number, 271129, the covering set is . Each of the remaining sequences has been tested and none has a small cove ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Conjecture
In mathematics, a conjecture is a conclusion or a proposition that is proffered on a tentative basis without proof. Some conjectures, such as the Riemann hypothesis (still a conjecture) or Fermat's Last Theorem (a conjecture until proven in 1995 by Andrew Wiles), have shaped much of mathematical history as new areas of mathematics are developed in order to prove them. Important examples Fermat's Last Theorem In number theory, Fermat's Last Theorem (sometimes called Fermat's conjecture, especially in older texts) states that no three positive integers a, ''b'', and ''c'' can satisfy the equation ''a^n + b^n = c^n'' for any integer value of ''n'' greater than two. This theorem was first conjectured by Pierre de Fermat in 1637 in the margin of a copy of '' Arithmetica'', where he claimed that he had a proof that was too large to fit in the margin. The first successful proof was released in 1994 by Andrew Wiles, and formally published in 1995, after 358 years of effort by mathe ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |