HOME
*





Regular Conditional Probability
In probability theory, regular conditional probability is a concept that formalizes the notion of conditioning on the outcome of a random variable. The resulting conditional probability distribution is a parametrized family of probability measures called a Markov kernel. Definition Conditional probability distribution Consider two random variables X, Y : \Omega \to \mathbb. The ''conditional probability distribution'' of ''Y'' given ''X'' is a two variable function \kappa_: \mathbb \times \mathcal(\mathbb) \to [0,1] If the random variable ''X'' is discrete :\kappa_(x, A) = P(Y \in A , X = x) = \begin \frac & \text P(X = x) > 0 \\ \text & \text. \end If the random variables ''X'', ''Y'' are continuous with density f_(x,y). :\kappa_(x, A) = \begin \frac & \text \int_\mathbb f_(x, y) \mathrmy > 0 \\ \text & \text. \end A more general definition can be given in terms of conditional expectation. Consider a function e_ : \mathbb \to [0,1] satisfying :e_(X(\omega)) = \mathbb[1_ , ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Probability Theory
Probability theory is the branch of mathematics concerned with probability. Although there are several different probability interpretations, probability theory treats the concept in a rigorous mathematical manner by expressing it through a set of axioms. Typically these axioms formalise probability in terms of a probability space, which assigns a measure taking values between 0 and 1, termed the probability measure, to a set of outcomes called the sample space. Any specified subset of the sample space is called an event. Central subjects in probability theory include discrete and continuous random variables, probability distributions, and stochastic processes (which provide mathematical abstractions of non-deterministic or uncertain processes or measured quantities that may either be single occurrences or evolve over time in a random fashion). Although it is not possible to perfectly predict random events, much can be said about their behavior. Two major results in probability ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Support (measure Theory)
In mathematics, the support (sometimes topological support or spectrum) of a measure ''μ'' on a measurable topological space (''X'', Borel(''X'')) is a precise notion of where in the space ''X'' the measure "lives". It is defined to be the largest ( closed) subset of ''X'' for which every open neighbourhood of every point of the set has positive measure. Motivation A (non-negative) measure \mu on a measurable space (X, \Sigma) is really a function \mu : \Sigma \to , +\infty. Therefore, in terms of the usual definition of support, the support of \mu is a subset of the σ-algebra \Sigma : :\operatorname (\mu) := \overline, where the overbar denotes set closure. However, this definition is somewhat unsatisfactory: we use the notion of closure, but we do not even have a topology on \Sigma . What we really want to know is where in the space X the measure \mu is non-zero. Consider two examples: # Lebesgue measure \lambda on the real line \mathbb . It seems ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Limit Point
In mathematics, a limit point, accumulation point, or cluster point of a set S in a topological space X is a point x that can be "approximated" by points of S in the sense that every neighbourhood of x with respect to the topology on X also contains a point of S other than x itself. A limit point of a set S does not itself have to be an element of S. There is also a closely related concept for sequences. A cluster point or accumulation point of a sequence (x_n)_ in a topological space X is a point x such that, for every neighbourhood V of x, there are infinitely many natural numbers n such that x_n \in V. This definition of a cluster or accumulation point of a sequence generalizes to nets and filters. The similarly named notion of a (respectively, a limit point of a filter, a limit point of a net) by definition refers to a point that the sequence converges to (respectively, the filter converges to, the net converges to). Importantly, although "limit point of a set" is synon ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Adherent Point
In mathematics, an adherent point (also closure point or point of closure or contact point) Steen, p. 5; Lipschutz, p. 69; Adamson, p. 15. of a subset A of a topological space X, is a point x in X such that every neighbourhood of x (or equivalently, every open neighborhood of x) contains at least one point of A. A point x \in X is an adherent point for A if and only if x is in the closure of A, thus :x \in \operatorname_X A if and only if for all open subsets U \subseteq X, if x \in U \text U \cap A \neq \varnothing. This definition differs from that of a limit point of a set, in that for a limit point it is required that every neighborhood of x contains at least one point of A x. Thus every limit point is an adherent point, but the converse is not true. An adherent point of A is either a limit point of A or an element of A (or both). An adherent point which is not a limit point is an isolated point. Intuitively, having an open set A defined as the area within (but not includi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Disintegration Theorem
In mathematics, the disintegration theorem is a result in measure theory and probability theory. It rigorously defines the idea of a non-trivial "restriction" of a measure to a measure zero subset of the measure space in question. It is related to the existence of conditional probability measures. In a sense, "disintegration" is the opposite process to the construction of a product measure. Motivation Consider the unit square in the Euclidean plane R2, . Consider the probability measure μ defined on ''S'' by the restriction of two-dimensional Lebesgue measure λ2 to ''S''. That is, the probability of an event ''E'' ⊆ ''S'' is simply the area of ''E''. We assume ''E'' is a measurable subset of ''S''. Consider a one-dimensional subset of ''S'' such as the line segment ''L''''x'' = × , 1 ''L''''x'' has μ-measure zero; every subset of ''L''''x'' is a μ- null set; since the Lebesgue measure space is a complete measure space, E \subseteq L_ \implies \mu (E) = 0. While t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Conditioning (probability)
Beliefs depend on the available information. This idea is formalized in probability theory by conditioning. Conditional probabilities, conditional expectations, and conditional probability distributions are treated on three levels: discrete probabilities, probability density functions, and measure theory. Conditioning leads to a non-random result if the condition is completely specified; otherwise, if the condition is left random, the result of conditioning is also random. Conditioning on the discrete level Example: A fair coin is tossed 10 times; the random variable ''X'' is the number of heads in these 10 tosses, and ''Y'' is the number of heads in the first 3 tosses. In spite of the fact that ''Y'' emerges before ''X'' it may happen that someone knows ''X'' but not ''Y''. Conditional probability Given that ''X'' = 1, the conditional probability of the event ''Y'' = 0 is : \mathbb (Y=0, X=1) = \frac = 0.7 More generally, : \begin \mathbb (Y=0, X=x) &= \frac = \frac && ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Subset
In mathematics, Set (mathematics), set ''A'' is a subset of a set ''B'' if all Element (mathematics), elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are unequal, then ''A'' is a proper subset of ''B''. The relationship of one set being a subset of another is called inclusion (or sometimes containment). ''A'' is a subset of ''B'' may also be expressed as ''B'' includes (or contains) ''A'' or ''A'' is included (or contained) in ''B''. A ''k''-subset is a subset with ''k'' elements. The subset relation defines a partial order on sets. In fact, the subsets of a given set form a Boolean algebra (structure), Boolean algebra under the subset relation, in which the join and meet are given by Intersection (set theory), intersection and Union (set theory), union, and the subset relation itself is the Inclusion (Boolean algebra), Boolean inclusion relation. Definition If ''A'' and ''B'' are sets and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Neighbourhood (mathematics)
In topology and related areas of mathematics, a neighbourhood (or neighborhood) is one of the basic concepts in a topological space. It is closely related to the concepts of open set and interior. Intuitively speaking, a neighbourhood of a point is a set of points containing that point where one can move some amount in any direction away from that point without leaving the set. Definitions Neighbourhood of a point If X is a topological space and p is a point in X, then a of p is a subset V of X that includes an open set U containing p, p \in U \subseteq V \subseteq X. This is also equivalent to the point p \in X belonging to the topological interior of V in X. The neighbourhood V need be an open subset X, but when V is open in X then it is called an . Some authors have been known to require neighbourhoods to be open, so it is important to note conventions. A set that is a neighbourhood of each of its points is open since it can be expressed as the union of open sets ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Open Set
In mathematics, open sets are a generalization of open intervals in the real line. In a metric space (a set along with a distance defined between any two points), open sets are the sets that, with every point , contain all points that are sufficiently near to (that is, all points whose distance to is less than some value depending on ). More generally, one defines open sets as the members of a given collection of subsets of a given set, a collection that has the property of containing every union of its members, every finite intersection of its members, the empty set, and the whole set itself. A set in which such a collection is given is called a topological space, and the collection is called a topology. These conditions are very loose, and allow enormous flexibility in the choice of open sets. For example, ''every'' subset can be open (the discrete topology), or no set can be open except the space itself and the empty set (the indiscrete topology). In practice, however, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Net (mathematics)
In mathematics, more specifically in general topology and related branches, a net or Moore–Smith sequence is a generalization of the notion of a sequence. In essence, a sequence is a function whose domain is the natural numbers. The codomain of this function is usually some topological space. The motivation for generalizing the notion of a sequence is that, in the context of topology, sequences do not fully encode all information about functions between topological spaces. In particular, the following two conditions are, in general, not equivalent for a map f between topological spaces X and Y: #The map f is continuous in the topological sense; #Given any point x in X, and any sequence in X converging to x, the composition of f with this sequence converges to f(x) (continuous in the sequential sense). While it is necessarily true that condition 1 implies condition 2 (The truth of the condition 1 ensures the truth of the conditions 2.), the reverse implication is not nece ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Limit (mathematics)
In mathematics, a limit is the value that a function (or sequence) approaches as the input (or index) approaches some value. Limits are essential to calculus and mathematical analysis, and are used to define continuity, derivatives, and integrals. The concept of a limit of a sequence is further generalized to the concept of a limit of a topological net, and is closely related to limit and direct limit in category theory. In formulas, a limit of a function is usually written as : \lim_ f(x) = L, (although a few authors may use "Lt" instead of "lim") and is read as "the limit of of as approaches equals ". The fact that a function approaches the limit as approaches is sometimes denoted by a right arrow (→ or \rightarrow), as in :f(x) \to L \text x \to c, which reads "f of x tends to L as x tends to c". History Grégoire de Saint-Vincent gave the first definition of limit (terminus) of a geometric series in his work ''Opus Geometricum'' (1647): "The ''terminus'' of a pro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pushforward Measure
In measure theory, a pushforward measure (also known as push forward, push-forward or image measure) is obtained by transferring ("pushing forward") a measure from one measurable space to another using a measurable function. Definition Given measurable spaces (X_1,\Sigma_1) and (X_2,\Sigma_2), a measurable mapping f\colon X_1\to X_2 and a measure \mu\colon\Sigma_1\to ,+\infty/math>, the pushforward of \mu is defined to be the measure f_(\mu)\colon\Sigma_2\to ,+\infty/math> given by :f_ (\mu) (B) = \mu \left( f^ (B) \right) for B \in \Sigma_. This definition applies ''mutatis mutandis'' for a signed or complex measure. The pushforward measure is also denoted as \mu \circ f^, f_\sharp \mu, f \sharp \mu, or f \# \mu. Main property: change-of-variables formula Theorem:Sections 3.6–3.7 in A measurable function ''g'' on ''X''2 is integrable with respect to the pushforward measure ''f''∗(''μ'') if and only if the composition g \circ f is integrable with respect to the measure '' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]