HOME
*





Rational Arrival Process
In queueing theory, a discipline within the mathematical theory of probability, a rational arrival process (RAP) is a mathematical model for the time between job arrivals to a system. It extends the concept of a Markov arrival process, allowing for dependent matrix-exponential distributed inter-arrival times. The processes were first characterised by Asmussen and Bladt and are referred to as rational arrival processes because the inter-arrival times have a rational Laplace–Stieltjes transform. Software Q-MAMa MATLAB MATLAB (an abbreviation of "MATrix LABoratory") is a proprietary multi-paradigm programming language and numeric computing environment developed by MathWorks. MATLAB allows matrix manipulations, plotting of functions and data, implementation ... toolbox which can solve queueing systems with RAP arrivals. References Queueing theory {{probability-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Queueing Theory
Queueing theory is the mathematical study of waiting lines, or queues. A queueing model is constructed so that queue lengths and waiting time can be predicted. Queueing theory is generally considered a branch of operations research because the results are often used when making business decisions about the resources needed to provide a service. Queueing theory has its origins in research by Agner Krarup Erlang when he created models to describe the system of Copenhagen Telephone Exchange company, a Danish company. The ideas have since seen applications including telecommunication, traffic engineering, computing and, particularly in industrial engineering, in the design of factories, shops, offices and hospitals, as well as in project management. Spelling The spelling "queueing" over "queuing" is typically encountered in the academic research field. In fact, one of the flagship journals of the field is ''Queueing Systems''. Single queueing nodes A queue, or queueing node ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Probability Theory
Probability theory is the branch of mathematics concerned with probability. Although there are several different probability interpretations, probability theory treats the concept in a rigorous mathematical manner by expressing it through a set of axioms. Typically these axioms formalise probability in terms of a probability space, which assigns a measure taking values between 0 and 1, termed the probability measure, to a set of outcomes called the sample space. Any specified subset of the sample space is called an event. Central subjects in probability theory include discrete and continuous random variables, probability distributions, and stochastic processes (which provide mathematical abstractions of non-deterministic or uncertain processes or measured quantities that may either be single occurrences or evolve over time in a random fashion). Although it is not possible to perfectly predict random events, much can be said about their behavior. Two major results in probability ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Markov Arrival Process
In queueing theory, a discipline within the mathematical theory of probability, a Markovian arrival process (MAP or MArP) is a mathematical model for the time between job arrivals to a system. The simplest such process is a Poisson process where the time between each arrival is exponentially distributed. The processes were first suggested by Neuts in 1979. Definition A Markov arrival process is defined by two matrices, ''D''0 and ''D''1 where elements of ''D''0 represent hidden transitions and elements of ''D''1 observable transitions. The block matrix ''Q'' below is a transition rate matrix for a continuous-time Markov chain. : Q=\left begin D_&D_&0&0&\dots\\ 0&D_&D_&0&\dots\\ 0&0&D_&D_&\dots\\ \vdots & \vdots & \ddots & \ddots & \ddots \end\right; . The simplest example is a Poisson process where ''D''0 = −''λ'' and ''D''1 = ''λ'' where there is only one possible transition, it is observable, and occurs at rate ''λ''. For ''Q'' to be a valid tran ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Matrix-exponential Distributed
In probability theory, the matrix-exponential distribution is an absolutely continuous distribution with rational Laplace–Stieltjes transform. They were first introduced by David Cox in 1955 as distributions with rational Laplace–Stieltjes transforms. The probability density function is f(x) = \mathbf e^ \mathbf \textx\ge 0 (and 0 when ''x'' < 0), and the is F(t) = 1 - \alpha e^ \textbf where 1 is a vector of 1s and : \begin \alpha & \in \mathbb R^, \\ T & \in \mathbb R^, \\ s & \in \mathbb R^. \end There are no restrictions on the parameters α, T, s other than that they correspond to a probability distribution. There is no straightforward way to ascertain if a particular set of parameters form such a distribution. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Stochastic Models
In probability theory and related fields, a stochastic () or random process is a mathematical object usually defined as a family of random variables. Stochastic processes are widely used as mathematical models of systems and phenomena that appear to vary in a random manner. Examples include the growth of a bacterial population, an electrical current fluctuating due to thermal noise, or the movement of a gas molecule. Stochastic processes have applications in many disciplines such as biology, chemistry, ecology, neuroscience, physics, image processing, signal processing, control theory, information theory, computer science, cryptography and telecommunications. Furthermore, seemingly random changes in financial markets have motivated the extensive use of stochastic processes in finance. Applications and the study of phenomena have in turn inspired the proposal of new stochastic processes. Examples of such stochastic processes include the Wiener process or Brownian motion process, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stochastic Processes And Their Applications
''Stochastic Processes and Their Applications'' is a monthly peer-reviewed scientific journal published by Elsevier for the Bernoulli Society for Mathematical Statistics and Probability. The editor-in-chief is Sylvie Méléard. The principal focus of this journal is theory and applications of stochastic processes. It was established in 1973. Abstracting and indexing The journal is abstracted and indexed in: According to the ''Journal Citation Reports'', ''Stochastic Processes and Their Applications'' has a 2020 impact factor The impact factor (IF) or journal impact factor (JIF) of an academic journal is a scientometric index calculated by Clarivate that reflects the yearly mean number of citations of articles published in the last two years in a given journal, as i ... of 1.467. References {{Statistics journals, state=collapsed Probability journals Elsevier academic journals English-language journals Monthly journals Academic journals established in 1973 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Laplace–Stieltjes Transform
The Laplace–Stieltjes transform, named for Pierre-Simon Laplace and Thomas Joannes Stieltjes, is an integral transform similar to the Laplace transform. For real-valued functions, it is the Laplace transform of a Stieltjes measure, however it is often defined for functions with values in a Banach space. It is useful in a number of areas of mathematics, including functional analysis, and certain areas of theoretical and applied probability. Real-valued functions The Laplace–Stieltjes transform of a real-valued function ''g'' is given by a Lebesgue–Stieltjes integral of the form :\int e^\,dg(x) for ''s'' a complex number. As with the usual Laplace transform, one gets a slightly different transform depending on the domain of integration, and for the integral to be defined, one also needs to require that ''g'' be of bounded variation on the region of integration. The most common are: * The bilateral (or two-sided) Laplace–Stieltjes transform is given by \(s) = \int_^ e^\,dg(x ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

MATLAB
MATLAB (an abbreviation of "MATrix LABoratory") is a proprietary multi-paradigm programming language and numeric computing environment developed by MathWorks. MATLAB allows matrix manipulations, plotting of functions and data, implementation of algorithms, creation of user interfaces, and interfacing with programs written in other languages. Although MATLAB is intended primarily for numeric computing, an optional toolbox uses the MuPAD symbolic engine allowing access to symbolic computing abilities. An additional package, Simulink, adds graphical multi-domain simulation and model-based design for dynamic and embedded systems. As of 2020, MATLAB has more than 4 million users worldwide. They come from various backgrounds of engineering, science, and economics. History Origins MATLAB was invented by mathematician and computer programmer Cleve Moler. The idea for MATLAB was based on his 1960s PhD thesis. Moler became a math professor at the University of New Mexico and starte ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]