Rational Dependence
   HOME
*





Rational Dependence
In mathematics, a collection of real numbers is rationally independent if none of them can be written as a linear combination of the other numbers in the collection with rational coefficients. A collection of numbers which is not rationally independent is called rationally dependent. For instance we have the following example. : \begin \mbox\qquad\\ \underbrace\\ \mbox\\ \end Because if we let x=3, y=\sqrt, then 1+\sqrt=\fracx+\fracy. Formal definition The real numbers ω1, ω2, ... , ω''n'' are said to be ''rationally dependent'' if there exist integers ''k''1, ''k''2, ... , ''k''''n'', not all of which are zero, such that : k_1 \omega_1 + k_2 \omega_2 + \cdots + k_n \omega_n = 0. If such integers do not exist, then the vectors are said to be ''rationally independent''. This condition can be reformulated as follows: ω1, ω2, ... , ω''n'' are rationally independent if the only ''n''-tuple of integers ''k''1, ''k''2, ... , ''k''''n'' such that : k_1 \omega_1 + k_2 \omega_2 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Real Number
In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every real number can be almost uniquely represented by an infinite decimal expansion. The real numbers are fundamental in calculus (and more generally in all mathematics), in particular by their role in the classical definitions of limits, continuity and derivatives. The set of real numbers is denoted or \mathbb and is sometimes called "the reals". The adjective ''real'' in this context was introduced in the 17th century by René Descartes to distinguish real numbers, associated with physical reality, from imaginary numbers (such as the square roots of ), which seemed like a theoretical contrivance unrelated to physical reality. The real numbers include the rational numbers, such as the integer and the fraction . The rest of the real ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rational Number
In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (e.g. ). The set of all rational numbers, also referred to as "the rationals", the field of rationals or the field of rational numbers is usually denoted by boldface , or blackboard bold \mathbb. A rational number is a real number. The real numbers that are rational are those whose decimal expansion either terminates after a finite number of digits (example: ), or eventually begins to repeat the same finite sequence of digits over and over (example: ). This statement is true not only in base 10, but also in every other integer base, such as the binary and hexadecimal ones (see ). A real number that is not rational is called irrational. Irrational numbers include , , , and . Since the set of rational numbers is countable, and the set of real numbers is uncou ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Trivial (mathematics)
In mathematics, the adjective trivial is often used to refer to a claim or a case which can be readily obtained from context, or an object which possesses a simple structure (e.g., groups, topological spaces). The noun triviality usually refers to a simple technical aspect of some proof or definition. The origin of the term in mathematical language comes from the medieval trivium curriculum, which distinguishes from the more difficult quadrivium curriculum. The opposite of trivial is nontrivial, which is commonly used to indicate that an example or a solution is not simple, or that a statement or a theorem is not easy to prove. The judgement of whether a situation under consideration is trivial or not depends on who considers it since the situation is obviously true for someone who has sufficient knowledge or experience of it while to someone who has never seen this, it may be even hard to be understood so not trivial at all. And there can be an argument about how quickly and easily ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vector Space
In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called '' vectors'', may be added together and multiplied ("scaled") by numbers called ''scalars''. Scalars are often real numbers, but can be complex numbers or, more generally, elements of any field. The operations of vector addition and scalar multiplication must satisfy certain requirements, called ''vector axioms''. The terms real vector space and complex vector space are often used to specify the nature of the scalars: real coordinate space or complex coordinate space. Vector spaces generalize Euclidean vectors, which allow modeling of physical quantities, such as forces and velocity, that have not only a magnitude, but also a direction. The concept of vector spaces is fundamental for linear algebra, together with the concept of matrix, which allows computing in vector spaces. This provides a concise and synthetic way for manipulating and studying systems of linea ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Linear Independence
In the theory of vector spaces, a set of vectors is said to be if there is a nontrivial linear combination of the vectors that equals the zero vector. If no such linear combination exists, then the vectors are said to be . These concepts are central to the definition of dimension. A vector space can be of finite dimension or infinite dimension depending on the maximum number of linearly independent vectors. The definition of linear dependence and the ability to determine whether a subset of vectors in a vector space is linearly dependent are central to determining the dimension of a vector space. Definition A sequence of vectors \mathbf_1, \mathbf_2, \dots, \mathbf_k from a vector space is said to be ''linearly dependent'', if there exist scalars a_1, a_2, \dots, a_k, not all zero, such that :a_1\mathbf_1 + a_2\mathbf_2 + \cdots + a_k\mathbf_k = \mathbf, where \mathbf denotes the zero vector. This implies that at least one of the scalars is nonzero, say a_1\ne 0, and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Baker's Theorem
In transcendental number theory, a mathematical discipline, Baker's theorem gives a lower bound for the absolute value of linear combinations of logarithms of algebraic numbers. The result, proved by , subsumed many earlier results in transcendental number theory and solved a problem posed by Alexander Gelfond nearly fifteen years earlier. Baker used this to prove the transcendence of many numbers, to derive effective bounds for the solutions of some Diophantine equations, and to solve the class number problem of finding all imaginary quadratic fields with class number 1. History To simplify notation, let \mathbb be the set of logarithms to the base ''e'' of nonzero algebraic numbers, that is \mathbb = \left \, where \Complex denotes the set of complex numbers and \overline denotes the algebraic numbers (the algebraic completion of the rational numbers \Q). Using this notation, several results in transcendental number theory become much easier to state. For example the Hermiteâ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dehn Invariant
In geometry, the Dehn invariant is a value used to determine whether one polyhedron can be cut into pieces and reassembled (" dissected") into another, and whether a polyhedron or its dissections can tile space. It is named after Max Dehn, who used it to solve Hilbert's third problem by proving that not all polyhedra with equal volume could be dissected into each other. Two polyhedra have a dissection into polyhedral pieces that can be reassembled into either one, if and only if their volumes and Dehn invariants are equal. A polyhedron can be cut up and reassembled to tile space if and only if its Dehn invariant is zero, so having Dehn invariant zero is a necessary condition for being a space-filling polyhedron. The Dehn invariant of a self-intersection-free flexible polyhedron is invariant as it flexes. The Dehn invariant is zero for the cube but nonzero for the other Platonic solids, implying that the other solids cannot tile space and that they cannot be dissected into a cube ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gelfond–Schneider Theorem
In mathematics, the Gelfond–Schneider theorem establishes the transcendence of a large class of numbers. History It was originally proved independently in 1934 by Aleksandr Gelfond and Theodor Schneider. Statement : If ''a'' and ''b'' are complex algebraic numbers with ''a'' â‰  0, 1, and ''b'' not rational, then any value of ''ab'' is a transcendental number. Comments * The values of ''a'' and ''b'' are not restricted to real numbers; complex numbers are allowed (here complex numbers are not regarded as rational when they have an imaginary part not equal to 0, even if both the real and imaginary parts are rational). * In general, is multivalued, where ln stands for the natural logarithm. This accounts for the phrase "any value of" in the theorem's statement. * An equivalent formulation of the theorem is the following: if ''α'' and ''γ'' are nonzero algebraic numbers, and we take any non-zero logarithm of ''α'', then is either rational or transcendental. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hamel Basis
In mathematics, a set of vectors in a vector space is called a basis if every element of may be written in a unique way as a finite linear combination of elements of . The coefficients of this linear combination are referred to as components or coordinates of the vector with respect to . The elements of a basis are called . Equivalently, a set is a basis if its elements are linearly independent and every element of is a linear combination of elements of . In other words, a basis is a linearly independent spanning set. A vector space can have several bases; however all the bases have the same number of elements, called the ''dimension'' of the vector space. This article deals mainly with finite-dimensional vector spaces. However, many of the principles are also valid for infinite-dimensional vector spaces. Definition A basis of a vector space over a field (such as the real numbers or the complex numbers ) is a linearly independent subset of that spans . This me ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hodge Conjecture
In mathematics, the Hodge conjecture is a major unsolved problem in algebraic geometry and complex geometry that relates the algebraic topology of a non-singular complex algebraic variety to its subvarieties. In simple terms, the Hodge conjecture asserts that the basic topological information like the number of holes in certain geometric spaces, complex algebraic varieties, can be understood by studying the possible nice shapes sitting inside those spaces, which look like zero sets of polynomial equations. The latter objects can be studied using algebra and the calculus of analytic functions, and this allows one to indirectly understand the broad shape and structure of often higher-dimensional spaces which can not be otherwise easily visualized. More specifically, the conjecture states that certain de Rham cohomology classes are algebraic; that is, they are sums of Poincaré duals of the homology classes of subvarieties. It was formulated by the Scottish mathematician William ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Lindemann–Weierstrass Theorem
In transcendental number theory, the Lindemann–Weierstrass theorem is a result that is very useful in establishing the transcendence of numbers. It states the following: In other words, the extension field \mathbb(e^, \dots, e^) has transcendence degree over \mathbb. An equivalent formulation , is the following: This equivalence transforms a linear relation over the algebraic numbers into an algebraic relation over \mathbb by using the fact that a symmetric polynomial whose arguments are all conjugates of one another gives a rational number. The theorem is named for Ferdinand von Lindemann and Karl Weierstrass. Lindemann proved in 1882 that is transcendental for every non-zero algebraic number thereby establishing that is transcendental (see below). Weierstrass proved the above more general statement in 1885. The theorem, along with the Gelfond–Schneider theorem, is extended by Baker's theorem, and all of these would be further generalized by Schanuel's conject ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]