Rankin–Selberg Method
   HOME





Rankin–Selberg Method
In mathematics, the Rankin–Selberg method, introduced by and , also known as the theory of integral representations of ''L''-functions, is a technique for directly constructing and analytically continuing several important examples of automorphic ''L''-functions. Some authors reserve the term for a special type of integral representation, namely those that involve an Eisenstein series. It has been one of the most powerful techniques for studying the Langlands program. History The theory in some sense dates back to Bernhard Riemann, who constructed his zeta function as the Mellin transform of Jacobi's theta function. Riemann used asymptotics of the theta function to obtain the analytic continuation, and the automorphy of the theta function to prove the functional equation. Erich Hecke, and later Hans Maass, applied the same Mellin transform method to modular forms on the upper half-plane, after which Riemann's example can be seen as a special case. Robert Alexander Rankin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Upper Half-plane
In mathematics, the upper half-plane, is the set of points in the Cartesian plane with The lower half-plane is the set of points with instead. Arbitrary oriented half-planes can be obtained via a planar rotation. Half-planes are an example of two-dimensional half-space. A half-plane can be split in two quadrants. Affine geometry The affine transformations of the upper half-plane include # shifts (x,y)\mapsto (x+c,y), c\in\mathbb, and # dilations (x,y)\mapsto (\lambda x,\lambda y), \lambda > 0. Proposition: Let and be semicircles in the upper half-plane with centers on the boundary. Then there is an affine mapping that takes A to B. :Proof: First shift the center of to Then take \lambda=(\text\ B)/(\text\ A) and dilate. Then shift to the center of Inversive geometry Definition: \mathcal := \left\ . can be recognized as the circle of radius centered at and as the polar plot of \rho(\theta) = \cos \theta. Proposition: in and are collinear points. In ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Adele Ring
In mathematics, the adele ring of a global field (also adelic ring, ring of adeles or ring of adèles) is a central object of class field theory, a branch of algebraic number theory. It is the restricted product of all the completions of the global field and is an example of a self-dual topological ring. An adele derives from a particular kind of idele. "Idele" derives from the French "idèle" and was coined by the French mathematician Claude Chevalley. The word stands for 'ideal element' (abbreviated: id.el.). Adele (French: "adèle") stands for 'additive idele' (that is, additive ideal element). The ring of adeles allows one to describe the Artin reciprocity law, which is a generalisation of quadratic reciprocity, and other reciprocity laws over finite fields. In addition, it is a classical theorem from Weil that G-bundles on an algebraic curve over a finite field can be described in terms of adeles for a reductive group G. Adeles are also connected with the adelic alg ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Robert Langlands
Robert Phelan Langlands, (; born October 6, 1936) is a Canadian mathematician. He is best known as the founder of the Langlands program, a vast web of conjectures and results connecting representation theory and automorphic forms to the study of Galois groups in number theory, for which he received the 2018 Abel Prize. He is emeritus professor and occupied Albert Einstein's office at the Institute for Advanced Study in Princeton, until 2020 when he retired. Early life and career Langlands was born in New Westminster, British Columbia, Canada, in 1936 to Robert Langlands and Kathleen J Phelan. He has two younger sisters (Mary b. 1938; Sally b. 1941). In 1945, his family moved to White Rock, near the US border, where his parents had a building supply and construction business. He graduated from Semiahmoo Secondary School and started enrolling at the University of British Columbia at the age of 16, receiving his undergraduate degree in mathematics in 1957; he continued at UBC t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]




Hervé Jacquet
Hervé Jacquet is a French American mathematician, working in automorphic forms. He is considered one of the founders of the theory of automorphic representations and their associated L-functions, and his results play a central role in modern number theory. Career Jacquet entered the École Normale Supérieure in 1959 and obtained his doctorat d'état under the direction of Roger Godement in 1967. He held academic positions at the Centre National de la Recherche Scientifique (1963–1969), the Institute for Advanced Study in Princeton (1967–1969), the University of Maryland at College Park (1969–1970), the Graduate Center of the City University of New York (1970–1974), and became a professor at Columbia University in 1974, becoming Professor Emeritus in 2007. Mathematical work The book by Jacquet and Robert Langlands on \operatorname(2) was an eclipsing event in the history of number theory. It presented a representation theory of automorphic forms and their associated L ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Dirichlet Series
In mathematics, a Dirichlet series is any series of the form \sum_^\infty \frac, where ''s'' is complex, and a_n is a complex sequence. It is a special case of general Dirichlet series. Dirichlet series play a variety of important roles in analytic number theory. The most usually seen definition of the Riemann zeta function is a Dirichlet series, as are the Dirichlet L-functions. Specifically, the Riemann zeta function ''ζ(s)'' is the Dirichlet series of the constant unit function ''u(n)'', namely: \zeta(s) = \sum_^\infty \frac = \sum_^\infty \frac = D(u, s), where ''D(u, s)'' denotes the Dirichlet series of ''u(n)''. It is conjectured that the Selberg class of series obeys the generalized Riemann hypothesis. The series is named in honor of Peter Gustav Lejeune Dirichlet. Combinatorial importance Dirichlet series can be used as generating series for counting weighted sets of objects with respect to a weight which is combined multiplicatively when taking Cartesian product ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Meromorphic Function
In the mathematical field of complex analysis, a meromorphic function on an open subset ''D'' of the complex plane is a function that is holomorphic on all of ''D'' ''except'' for a set of isolated points, which are ''poles'' of the function. The term comes from the Greek ''meros'' ( μέρος), meaning "part". Every meromorphic function on ''D'' can be expressed as the ratio between two holomorphic functions (with the denominator not constant 0) defined on ''D'': any pole must coincide with a zero of the denominator. Heuristic description Intuitively, a meromorphic function is a ratio of two well-behaved (holomorphic) functions. Such a function will still be well-behaved, except possibly at the points where the denominator of the fraction is zero. If the denominator has a zero at ''z'' and the numerator does not, then the value of the function will approach infinity; if both parts have a zero at ''z'', then one must compare the multiplicity of these zeros. From an algeb ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Cusp Form
In number theory, a branch of mathematics, a cusp form is a particular kind of modular form with a zero constant coefficient in the Fourier series expansion. Introduction A cusp form is distinguished in the case of modular forms for the modular group by the vanishing of the constant coefficient ''a''0 in the Fourier series expansion (see ''q''-expansion) :\sum a_n q^n. This Fourier expansion exists as a consequence of the presence in the modular group's action on the upper half-plane via the transformation :z\mapsto z+1. For other groups, there may be some translation through several units, in which case the Fourier expansion is in terms of a different parameter. In all cases, though, the limit as ''q'' → 0 is the limit in the upper half-plane as the imaginary part of ''z'' → ∞. Taking the quotient by the modular group, this limit corresponds to a cusp of a modular curve (in the sense of a point added for compactification). So, the definition amounts to saying that a cu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Real Analytic Eisenstein Series
In mathematics, the simplest real analytic Eisenstein series is a special function of two variables. It is used in the representation theory of SL(2,R) and in analytic number theory. It is closely related to the Epstein zeta function. There are many generalizations associated to more complicated groups. Definition The Eisenstein series ''E''(''z'', ''s'') for ''z'' = ''x'' + ''iy'' in the upper half-plane is defined by :E(z,s) =\sum_ for Re(''s'') > 1, and by analytic continuation for other values of the complex number ''s''. The sum is over all pairs of coprime integers. There are several other slightly different definitions. Some authors omit the factor of , and some sum over all pairs of integers that are not both zero; which changes the function by a factor of ζ(2''s''). Properties As a function on ''z'' Viewed as a function of ''z'', ''E''(''z'',''s'') is a real-analytic eigenfunction of the Laplace operator on H with the eigenvalue ''s''(''s''-1). In other words, it sat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]




General Linear Group
In mathematics, the general linear group of degree n is the set of n\times n invertible matrices, together with the operation of ordinary matrix multiplication. This forms a group, because the product of two invertible matrices is again invertible, and the inverse of an invertible matrix is invertible, with the identity matrix as the identity element of the group. The group is so named because the columns (and also the rows) of an invertible matrix are linearly independent, hence the vectors/points they define are in general linear position, and matrices in the general linear group take points in general linear position to points in general linear position. To be more precise, it is necessary to specify what kind of objects may appear in the entries of the matrix. For example, the general linear group over \R (the set of real numbers) is the group of n\times n invertible matrices of real numbers, and is denoted by \operatorname_n(\R) or \operatorname(n,\R). More generally ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Standard Representation
Standard may refer to: Symbols * Colours, standards and guidons, kinds of military signs * Heraldic flag, Standard (emblem), a type of a large symbol or emblem used for identification Norms, conventions or requirements * Standard (metrology), an object that bears a defined relationship to a unit of measure used for calibration of measuring devices * Standard (timber unit), an obsolete measure of timber used in trade * Breed standard (also called bench standard), in animal fancy and animal husbandry * BioCompute Object, BioCompute Standard, a standard for next generation sequencing * De facto standard, ''De facto'' standard, product or system with market dominance * Gold standard, a monetary system based on gold; also used metaphorically for the best of several options, against which the others are measured * Internet Standard, a specification ratified as an open standard by the Internet Engineering Task Force * Learning standards, standards applied to education content * Stand ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]



MORE