HOME
*





Rankin–Selberg Method
In mathematics, the Rankin–Selberg method, introduced by and , also known as the theory of integral representations of ''L''-functions, is a technique for directly constructing and analytically continuing several important examples of automorphic ''L''-functions. Some authors reserve the term for a special type of integral representation, namely those that involve an Eisenstein series. It has been one of the most powerful techniques for studying the Langlands program. History The theory in some sense dates back to Bernhard Riemann, who constructed his zeta function as the Mellin transform of Jacobi's theta function. Riemann used asymptotics of the theta function In mathematics, theta functions are special functions of several complex variables. They show up in many topics, including Abelian varieties, moduli spaces, quadratic forms, and solitons. As Grassmann algebras, they appear in quantum field ... to obtain the analytic continuation, and the automorphic for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Upper Half-plane
In mathematics, the upper half-plane, \,\mathcal\,, is the set of points in the Cartesian plane with > 0. Complex plane Mathematicians sometimes identify the Cartesian plane with the complex plane, and then the upper half-plane corresponds to the set of complex numbers with positive imaginary part: :\mathcal \equiv \ ~. The term arises from a common visualization of the complex number as the point in the plane endowed with Cartesian coordinates. When the  axis is oriented vertically, the "upper half-plane" corresponds to the region above the  axis and thus complex numbers for which  > 0. It is the domain of many functions of interest in complex analysis, especially modular forms. The lower half-plane, defined by   0. Proposition: Let ''A'' and ''B'' be semicircles in the upper half-plane with centers on the boundary. Then there is an affine mapping that takes ''A'' to ''B''. :Proof: First shift the center of ''A'' to (0,0). Then take λ = (diame ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Adele Ring
Adele Laurie Blue Adkins (, ; born 5 May 1988), professionally known by the mononym Adele, is an English singer and songwriter. After graduating in arts from the BRIT School in 2006, Adele signed a record deal with XL Recordings. Her debut album, '' 19'', was released in 2008 and spawned the UK top-five singles "Chasing Pavements" and "Make You Feel My Love". The album was certified 8× platinum in the UK and triple platinum in the US. Adele was honoured with the Brit Award for Rising Star as well as the Grammy Award for Best New Artist. Adele released her second studio album, '' 21'', in 2011. It became the world's best-selling album of the 21st century, with sales of over 31 million copies. It was certified 18× platinum in the UK (the highest by a solo artist of all time) and Diamond in the US. According to ''Billboard'', ''21'' is the top-performing album in the US chart history, topping the ''Billboard'' 200 for 24 weeks (the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Robert Langlands
Robert Phelan Langlands, (; born October 6, 1936) is a Canadian mathematician. He is best known as the founder of the Langlands program, a vast web of conjectures and results connecting representation theory and automorphic forms to the study of Galois groups in number theory, for which he received the 2018 Abel Prize. He was an emeritus professor and occupied Albert Einstein's office at the Institute for Advanced Study in Princeton, until 2020 when he retired. Career Langlands was born in New Westminster, British Columbia, Canada, in 1936 to Robert Langlands and Kathleen J Phelan. He has two younger sisters (Mary b 1938; Sally b 1941). In 1945, his family moved to White Rock, near the US border, where his parents had a building supply and construction business. He graduated from Semiahmoo Secondary School and started enrolling at the University of British Columbia at the age of 16, receiving his undergraduate degree in Mathematics in 1957; he continued at UBC to receive an M ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hervé Jacquet
Hervé Jacquet is a French American mathematician, working in automorphic forms. He is considered one of the founders of the theory of automorphic representations and their associated L-functions, and his results play a central role in modern number theory. Career Jacquet entered the École Normale Supérieure in 1959 and obtained his doctorat d'état under the direction of Roger Godement in 1967. He held academic positions at the Centre National de la Recherche Scientifique (1963–1969), the Institute for Advanced Study in Princeton (1967–1969), the University of Maryland at College Park (1969–1970), the Graduate Center of the City University of New York (1970–1974), and became a professor at Columbia University in 1974, becoming Professor Emeritus in 2007. Mathematical work The book by Jacquet and Robert Langlands on \operatorname(2) was an eclipsing event in the history of number theory. It presented a representation theory of automorphic forms and their associated L− ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Dirichlet Series
In mathematics, a Dirichlet series is any series of the form \sum_^\infty \frac, where ''s'' is complex, and a_n is a complex sequence. It is a special case of general Dirichlet series. Dirichlet series play a variety of important roles in analytic number theory. The most usually seen definition of the Riemann zeta function is a Dirichlet series, as are the Dirichlet L-functions. It is conjectured that the Selberg class of series obeys the generalized Riemann hypothesis. The series is named in honor of Peter Gustav Lejeune Dirichlet. Combinatorial importance Dirichlet series can be used as generating series for counting weighted sets of objects with respect to a weight which is combined multiplicatively when taking Cartesian products. Suppose that ''A'' is a set with a function ''w'': ''A'' → N assigning a weight to each of the elements of ''A'', and suppose additionally that the Fiber (mathematics), fibre over any natural number under that weight is a finite set. (We call such ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Meromorphic Function
In the mathematical field of complex analysis, a meromorphic function on an open subset ''D'' of the complex plane is a function that is holomorphic on all of ''D'' ''except'' for a set of isolated points, which are pole (complex analysis), poles of the function. The term comes from the Greek ''meros'' ( μέρος), meaning "part". Every meromorphic function on ''D'' can be expressed as the ratio between two holomorphic functions (with the denominator not constant 0) defined on ''D'': any pole must coincide with a zero of the denominator. Heuristic description Intuitively, a meromorphic function is a ratio of two well-behaved (holomorphic) functions. Such a function will still be well-behaved, except possibly at the points where the denominator of the fraction is zero. If the denominator has a zero at ''z'' and the numerator does not, then the value of the function will approach infinity; if both parts have a zero at ''z'', then one must compare the multiplicity of these zero ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cusp Form
In number theory, a branch of mathematics, a cusp form is a particular kind of modular form with a zero constant coefficient in the Fourier series expansion. Introduction A cusp form is distinguished in the case of modular forms for the modular group by the vanishing of the constant coefficient ''a''0 in the Fourier series expansion (see ''q''-expansion) :\sum a_n q^n. This Fourier expansion exists as a consequence of the presence in the modular group's action on the upper half-plane via the transformation :z\mapsto z+1. For other groups, there may be some translation through several units, in which case the Fourier expansion is in terms of a different parameter. In all cases, though, the limit as ''q'' → 0 is the limit in the upper half-plane as the imaginary part of ''z'' → ∞. Taking the quotient by the modular group, this limit corresponds to a cusp of a modular curve (in the sense of a point added for compactification). So, the definition amounts to saying that a cusp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Real Analytic Eisenstein Series
In mathematics, the simplest real analytic Eisenstein series is a special function of two variables. It is used in the representation theory of SL(2,R) and in analytic number theory. It is closely related to the Epstein zeta function. There are many generalizations associated to more complicated groups. Definition The Eisenstein series ''E''(''z'', ''s'') for ''z'' = ''x'' + ''iy'' in the upper half-plane is defined by :E(z,s) =\sum_ for Re(''s'') > 1, and by analytic continuation for other values of the complex number ''s''. The sum is over all pairs of coprime integers. Warning: there are several other slightly different definitions. Some authors omit the factor of ½, and some sum over all pairs of integers that are not both zero; which changes the function by a factor of ζ(2''s''). Properties As a function on ''z'' Viewed as a function of ''z'', ''E''(''z'',''s'') is a real-analytic eigenfunction of the Laplace operator on H with the eigenvalue ''s''(''s''-1). In other wo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

General Linear Group
In mathematics, the general linear group of degree ''n'' is the set of invertible matrices, together with the operation of ordinary matrix multiplication. This forms a group, because the product of two invertible matrices is again invertible, and the inverse of an invertible matrix is invertible, with identity matrix as the identity element of the group. The group is so named because the columns (and also the rows) of an invertible matrix are linearly independent, hence the vectors/points they define are in general linear position, and matrices in the general linear group take points in general linear position to points in general linear position. To be more precise, it is necessary to specify what kind of objects may appear in the entries of the matrix. For example, the general linear group over R (the set of real numbers) is the group of invertible matrices of real numbers, and is denoted by GL''n''(R) or . More generally, the general linear group of degree ''n'' over any ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Standard Representation
In mathematics, the classical groups are defined as the special linear groups over the reals , the complex numbers and the quaternions together with special automorphism groups of symmetric or skew-symmetric bilinear forms and Hermitian or skew-Hermitian sesquilinear forms defined on real, complex and quaternionic finite-dimensional vector spaces. Of these, the complex classical Lie groups are four infinite families of Lie groups that together with the exceptional groups exhaust the classification of simple Lie groups. The compact classical groups are compact real forms of the complex classical groups. The finite analogues of the classical groups are the classical groups of Lie type. The term "classical group" was coined by Hermann Weyl, it being the title of his 1939 monograph ''The Classical Groups''. The classical groups form the deepest and most useful part of the subject of linear Lie groups. Most types of classical groups find application in classical and modern physics. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tensor Product
In mathematics, the tensor product V \otimes W of two vector spaces and (over the same field) is a vector space to which is associated a bilinear map V\times W \to V\otimes W that maps a pair (v,w),\ v\in V, w\in W to an element of V \otimes W denoted v \otimes w. An element of the form v \otimes w is called the tensor product of and . An element of V \otimes W is a tensor, and the tensor product of two vectors is sometimes called an ''elementary tensor'' or a ''decomposable tensor''. The elementary tensors span V \otimes W in the sense that every element of V \otimes W is a sum of elementary tensors. If bases are given for and , a basis of V \otimes W is formed by all tensor products of a basis element of and a basis element of . The tensor product of two vector spaces captures the properties of all bilinear maps in the sense that a bilinear map from V\times W into another vector space factors uniquely through a linear map V\otimes W\to Z (see Universal property). Tenso ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]