Random Binary Search Tree
In computer science and probability theory, a random binary tree is a binary tree selected at random from some probability distribution on binary trees. Two different distributions are commonly used: binary trees formed by inserting nodes one at a time according to a random permutation, and binary trees chosen from a uniform discrete distribution in which all distinct trees are equally likely. It is also possible to form other distributions, for instance by repeated splitting. Adding and removing nodes directly in a random binary tree will in general disrupt its random structure, but the treap and related randomized binary search tree data structures use the principle of binary trees formed from a random permutation in order to maintain a balanced binary search tree dynamically as nodes are inserted and deleted. For random trees that are not necessarily binary, see random tree. Binary trees from random permutations For any set of numbers (or, more generally, values from some t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Computer Science
Computer science is the study of computation, automation, and information. Computer science spans theoretical disciplines (such as algorithms, theory of computation, information theory, and automation) to Applied science, practical disciplines (including the design and implementation of Computer architecture, hardware and Computer programming, software). Computer science is generally considered an area of research, academic research and distinct from computer programming. Algorithms and data structures are central to computer science. The theory of computation concerns abstract models of computation and general classes of computational problem, problems that can be solved using them. The fields of cryptography and computer security involve studying the means for secure communication and for preventing Vulnerability (computing), security vulnerabilities. Computer graphics (computer science), Computer graphics and computational geometry address the generation of images. Progr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Strahler Number
In mathematics, the Strahler number or Horton–Strahler number of a mathematical tree is a numerical measure of its branching complexity. These numbers were first developed in hydrology by and ; in this application, they are referred to as the Strahler stream order and are used to define stream size based on a hierarchy of tributaries. They also arise in the analysis of L-systems and of hierarchical biological structures such as (biological) trees and animal respiratory and circulatory systems, in register allocation for compilation of high-level programming languages and in the analysis of social networks. Alternative stream ordering systems have been developed by Shreve and Hodgkinson et al.Hodgkinson, J.H., McLoughlin, S. & Cox, M.E. 2006. The influence of structural grain on drainage in a metamorphic sub-catchment: Laceys Creek, southeast Queensland, Australia. Geomorphology, 81: 394–407. A statistical comparison of Strahler and Shreve systems, together with an analysis of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Pat Morin
Patrick Ryan Morin is a Canadian computer scientist specializing in computational geometry and data structures. He is a professor in the School of Computer Science at Carleton University. Education and career Morin was educated at Carleton University, earning a bachelor's degree with highest honours in 1996, a master's degree in 1998, and a Ph.D. in 2001. His dissertation, ''Online Routing in Geometric Graphs'', was jointly supervised by Jit Bose and Jörg-Rüdiger Sack. After postdoctoral research at McGill University, he returned to Carleton University as a faculty member in 2002. Contributions Morin has published highly-cited work on geographic routing in geometric graphs, including unit disk graphs and triangulations, with coauthors including Jit Bose, Erik Demaine, Stefan Langerman, and Jorge Urrutia. With Joachim Gudmundsson, he co-founded the ''Journal of Computational Geometry'', and continues as its managing editor. He is the author of an open textbook on data structu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Beta Distribution
In probability theory and statistics, the beta distribution is a family of continuous probability distributions defined on the interval , 1in terms of two positive parameters, denoted by ''alpha'' (''α'') and ''beta'' (''β''), that appear as exponents of the random variable and control the shape of the distribution. The beta distribution has been applied to model the behavior of random variables limited to intervals of finite length in a wide variety of disciplines. The beta distribution is a suitable model for the random behavior of percentages and proportions. In Bayesian inference, the beta distribution is the conjugate prior probability distribution for the Bernoulli, binomial, negative binomial and geometric distributions. The formulation of the beta distribution discussed here is also known as the beta distribution of the first kind, whereas ''beta distribution of the second kind'' is an alternative name for the beta prime distribution. The generalization to mult ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Paul Kruszewski
Paul Kruszewski (born 1967) is a Canadian AI technologist and serial entrepreneur known for his work in artificial intelligence and computer graphics. He is the founder and CEO of , an AI and computer vision software engineering company based in Montreal, Quebec. He has founded three AI startups, including , specializing in crowd simulation, NPC behaviours, and human pose estimation. His projects have gradually gotten more complex as he's moved from developing AI software capable of understanding many people doing simple tasks to fewer people engaged in more complex tasks to perfect knowledge of individual body language. Academic life Kruszewski completed his bachelor's degree in computer science at the University of Alberta. While attending U of A, he was president of the Computer Science Association. After graduating, he went on to obtain an MA and PhD in computer science from McGill University. For graduate school, Kruszewski received a Natural Sciences and Engineerin ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Evolutionary Tree
A phylogenetic tree (also phylogeny or evolutionary tree Felsenstein J. (2004). ''Inferring Phylogenies'' Sinauer Associates: Sunderland, MA.) is a branching diagram or a tree showing the evolutionary relationships among various biological species or other entities based upon similarities and differences in their physical or genetic characteristics. All life on Earth is part of a single phylogenetic tree, indicating common ancestry. In a ''rooted'' phylogenetic tree, each node with descendants represents the inferred most recent common ancestor of those descendants, and the edge lengths in some trees may be interpreted as time estimates. Each node is called a taxonomic unit. Internal nodes are generally called hypothetical taxonomic units, as they cannot be directly observed. Trees are useful in fields of biology such as bioinformatics, systematics, and phylogenetics. ''Unrooted'' trees illustrate only the relatedness of the leaf nodes and do not require the ancestral root to ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Register Allocation
In compiler optimization, register allocation is the process of assigning local automatic variables and expression results to a limited number of processor registers. Register allocation can happen over a basic block (''local register allocation''), over a whole function/ procedure (''global register allocation''), or across function boundaries traversed via call-graph (''interprocedural register allocation''). When done per function/procedure the calling convention may require insertion of save/restore around each call-site. Context Principle {, class="wikitable floatright" , + Different number of scalar registers in the most common architectures , - ! Architecture ! scope="col" , 32 bits ! scope="col" , 64 bits , - ! scope="row" , ARM , 15 , 31 , - ! scope="row" , Intel x86 , 8 , 16 , - ! scope="row" , MIPS , 32 , 32 , - ! scope="row" , POWER/PowerPC , 32 , 32 , - ! scope="row" , RISC-V , 16/32 , 32 , - ! scope="row" , SP ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Compiler
In computing, a compiler is a computer program that translates computer code written in one programming language (the ''source'' language) into another language (the ''target'' language). The name "compiler" is primarily used for programs that translate source code from a high-level programming language to a low-level programming language (e.g. assembly language, object code, or machine code) to create an executable program. Compilers: Principles, Techniques, and Tools by Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman - Second Edition, 2007 There are many different types of compilers which produce output in different useful forms. A ''cross-compiler'' produces code for a different CPU or operating system than the one on which the cross-compiler itself runs. A ''bootstrap compiler'' is often a temporary compiler, used for compiling a more permanent or better optimised compiler for a language. Related software include, a program that translates from a low-level language to a h ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Expression (mathematics)
In mathematics, an expression or mathematical expression is a finite combination of symbols that is well-formed according to rules that depend on the context. Mathematical symbols can designate numbers ( constants), variables, operations, functions, brackets, punctuation, and grouping to help determine order of operations and other aspects of logical syntax. Many authors distinguish an expression from a '' formula'', the former denoting a mathematical object, and the latter denoting a statement about mathematical objects. For example, 8x-5 is an expression, while 8x-5 \geq 5x-8 is a formula. However, in modern mathematics, and in particular in computer algebra, formulas are viewed as expressions that can be evaluated to ''true'' or ''false'', depending on the values that are given to the variables occurring in the expressions. For example 8x-5 \geq 5x-8 takes the value ''false'' if is given a value less than –1, and the value ''true'' otherwise. Examples The use of e ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Parse Tree
A parse tree or parsing tree or derivation tree or concrete syntax tree is an ordered, rooted tree that represents the syntactic structure of a string according to some context-free grammar. The term ''parse tree'' itself is used primarily in computational linguistics; in theoretical syntax, the term ''syntax tree'' is more common. Concrete syntax trees reflect the syntax of the input language, making them distinct from the abstract syntax trees used in computer programming. Unlike Reed-Kellogg sentence diagrams used for teaching grammar, parse trees do not use distinct symbol shapes for different types of constituents. Parse trees are usually constructed based on either the constituency relation of constituency grammars (phrase structure grammars) or the dependency relation of dependency grammars. Parse trees may be generated for sentences in natural languages (see natural language processing), as well as during processing of computer languages, such as programming languages. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Multiplicative Inverse
In mathematics, a multiplicative inverse or reciprocal for a number ''x'', denoted by 1/''x'' or ''x''−1, is a number which when Multiplication, multiplied by ''x'' yields the multiplicative identity, 1. The multiplicative inverse of a rational number, fraction ''a''/''b'' is ''b''/''a''. For the multiplicative inverse of a real number, divide 1 by the number. For example, the reciprocal of 5 is one fifth (1/5 or 0.2), and the reciprocal of 0.25 is 1 divided by 0.25, or 4. The reciprocal function, the Function (mathematics), function ''f''(''x'') that maps ''x'' to 1/''x'', is one of the simplest examples of a function which is its own inverse (an Involution (mathematics), involution). Multiplying by a number is the same as Division (mathematics), dividing by its reciprocal and vice versa. For example, multiplication by 4/5 (or 0.8) will give the same result as division by 5/4 (or 1.25). Therefore, multiplication by a number followed by multiplication by its reciprocal yiel ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Catalan Number
In combinatorial mathematics, the Catalan numbers are a sequence of natural numbers that occur in various counting problems, often involving recursively defined objects. They are named after the French-Belgian mathematician Eugène Charles Catalan (1814–1894). The ''n''th Catalan number can be expressed directly in terms of binomial coefficients by :C_n = \frac = \frac = \prod\limits_^\frac \qquad\textn\ge 0. The first Catalan numbers for ''n'' = 0, 1, 2, 3, ... are :1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, ... . Properties An alternative expression for ''C''''n'' is :C_n = - for n\ge 0, which is equivalent to the expression given above because \tbinom=\tfrac\tbinomn. This expression shows that ''C''''n'' is an integer, which is not immediately obvious from the first formula given. This expression forms the basis for a proof of the correctness of the formula. The Catalan numbers satisfy the recurrence relations :C_0 = 1 \quad \text \quad C_=\sum_^C_i ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |