HOME
*





Radicial Morphism
In algebraic geometry, a morphism of schemes :''f'': ''X'' → ''Y'' is called radicial or universally injective, if, for every field ''K'' the induced map ''X''(''K'') → ''Y''(''K'') is injective. (EGA I, (3.5.4)) This is a generalization of the notion of a purely inseparable extension of fields (sometimes called a radicial extension, which should not be confused with a radical extension.) It suffices to check this for ''K'' algebraically closed. This is equivalent to the following condition: ''f'' is injective on the topological spaces and for every point ''x'' in ''X'', the extension of the residue fields :''k''(''f''(''x'')) ⊂ ''k''(''x'') is radicial, i.e. purely inseparable. It is also equivalent to every base change of ''f'' being injective on the underlying topological spaces. (Thus the term ''universally injective''.) Radicial morphisms are stable under composition, products and base change. If ''gf'' is radicial, so is ''f''. References * , section ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Geometry
Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical problems about these sets of zeros. The fundamental objects of study in algebraic geometry are algebraic varieties, which are geometric manifestations of solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are: plane algebraic curves, which include lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscates and Cassini ovals. A point of the plane belongs to an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of the points of special interest like the singular points, the inflection points and the points at infinity. More advanced questions involve the topology of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Morphism
In mathematics, particularly in category theory, a morphism is a structure-preserving map from one mathematical structure to another one of the same type. The notion of morphism recurs in much of contemporary mathematics. In set theory, morphisms are functions; in linear algebra, linear transformations; in group theory, group homomorphisms; in topology, continuous functions, and so on. In category theory, ''morphism'' is a broadly similar idea: the mathematical objects involved need not be sets, and the relationships between them may be something other than maps, although the morphisms between the objects of a given category have to behave similarly to maps in that they have to admit an associative operation similar to function composition. A morphism in category theory is an abstraction of a homomorphism. The study of morphisms and of the structures (called "objects") over which they are defined is central to category theory. Much of the terminology of morphisms, as well as the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Scheme (mathematics)
In mathematics, a scheme is a mathematical structure that enlarges the notion of algebraic variety in several ways, such as taking account of multiplicities (the equations ''x'' = 0 and ''x''2 = 0 define the same algebraic variety but different schemes) and allowing "varieties" defined over any commutative ring (for example, Fermat curves are defined over the integers). Scheme theory was introduced by Alexander Grothendieck in 1960 in his treatise "Éléments de géométrie algébrique"; one of its aims was developing the formalism needed to solve deep problems of algebraic geometry, such as the Weil conjectures (the last of which was proved by Pierre Deligne). Strongly based on commutative algebra, scheme theory allows a systematic use of methods of topology and homological algebra. Scheme theory also unifies algebraic geometry with much of number theory, which eventually led to Wiles's proof of Fermat's Last Theorem. Formally, a scheme is a topological space together with ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Injective
In mathematics, an injective function (also known as injection, or one-to-one function) is a function that maps distinct elements of its domain to distinct elements; that is, implies . (Equivalently, implies in the equivalent contrapositive statement.) In other words, every element of the function's codomain is the image of one element of its domain. The term must not be confused with that refers to bijective functions, which are functions such that each element in the codomain is an image of exactly one element in the domain. A homomorphism between algebraic structures is a function that is compatible with the operations of the structures. For all common algebraic structures, and, in particular for vector spaces, an is also called a . However, in the more general context of category theory, the definition of a monomorphism differs from that of an injective homomorphism. This is thus a theorem that they are equivalent for algebraic structures; see for more details. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Purely Inseparable Extension
In algebra, a purely inseparable extension of fields is an extension ''k'' ⊆ ''K'' of fields of characteristic ''p'' > 0 such that every element of ''K'' is a root of an equation of the form ''x''''q'' = ''a'', with ''q'' a power of ''p'' and ''a'' in ''k''. Purely inseparable extensions are sometimes called radicial extensions, which should not be confused with the similar-sounding but more general notion of radical extensions. Purely inseparable extensions An algebraic extension E\supseteq F is a ''purely inseparable extension'' if and only if for every \alpha\in E\setminus F, the minimal polynomial of \alpha over ''F'' is ''not'' a separable polynomial.Isaacs, p. 298 If ''F'' is any field, the trivial extension F\supseteq F is purely inseparable; for the field ''F'' to possess a ''non-trivial'' purely inseparable extension, it must be imperfect as outlined in the above section. Several equivalent and more concrete definitions for the notion of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Radicial Extension
In algebra, a purely inseparable extension of fields is an extension ''k'' ⊆ ''K'' of fields of characteristic ''p'' > 0 such that every element of ''K'' is a root of an equation of the form ''x''''q'' = ''a'', with ''q'' a power of ''p'' and ''a'' in ''k''. Purely inseparable extensions are sometimes called radicial extensions, which should not be confused with the similar-sounding but more general notion of radical extensions. Purely inseparable extensions An algebraic extension E\supseteq F is a ''purely inseparable extension'' if and only if for every \alpha\in E\setminus F, the minimal polynomial of \alpha over ''F'' is ''not'' a separable polynomial.Isaacs, p. 298 If ''F'' is any field, the trivial extension F\supseteq F is purely inseparable; for the field ''F'' to possess a ''non-trivial'' purely inseparable extension, it must be imperfect as outlined in the above section. Several equivalent and more concrete definitions for the notion of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Radical Extension
In mathematics and more specifically in field theory, a radical extension of a field ''K'' is an extension of ''K'' that is obtained by adjoining a sequence of ''n''th roots of elements. Definition A simple radical extension is a simple extension ''F''/''K'' generated by a single element \alpha satisfying \alpha^n = b for an element ''b'' of ''K''. In characteristic ''p'', we also take an extension by a root of an Artin–Schreier polynomial to be a simple radical extension. A radical series is a tower K = F_0 < F_1 < \cdots < F_k where each extension F_i / F_ is a simple radical extension.


Properties

# If ''E'' is a radical extension of ''F'' and ''F'' is a radical extension of ''K'' then ''E'' is a radical extension of ''K''. # If ''E'' and ''F'' are radical extensions of ''K'' in an ''C'' of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Residue Field
In mathematics, the residue field is a basic construction in commutative algebra. If ''R'' is a commutative ring and ''m'' is a maximal ideal, then the residue field is the quotient ring ''k'' = ''R''/''m'', which is a field. Frequently, ''R'' is a local ring and ''m'' is then its unique maximal ideal. This construction is applied in algebraic geometry, where to every point ''x'' of a scheme ''X'' one associates its residue field ''k''(''x''). One can say a little loosely that the residue field of a point of an abstract algebraic variety is the 'natural domain' for the coordinates of the point. Definition Suppose that ''R'' is a commutative local ring, with maximal ideal ''m''. Then the residue field is the quotient ring ''R''/''m''. Now suppose that ''X'' is a scheme and ''x'' is a point of ''X''. By the definition of scheme, we may find an affine neighbourhood ''U'' = Spec(''A''), with ''A'' some commutative ring. Considered in the neighbourhood ''U'', the point ''x'' correspond ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Purely Inseparable Field Extension
In algebra, a purely inseparable extension of fields is an extension ''k'' ⊆ ''K'' of fields of characteristic ''p'' > 0 such that every element of ''K'' is a root of an equation of the form ''x''''q'' = ''a'', with ''q'' a power of ''p'' and ''a'' in ''k''. Purely inseparable extensions are sometimes called radicial extensions, which should not be confused with the similar-sounding but more general notion of radical extensions. Purely inseparable extensions An algebraic extension E\supseteq F is a ''purely inseparable extension'' if and only if for every \alpha\in E\setminus F, the minimal polynomial of \alpha over ''F'' is ''not'' a separable polynomial.Isaacs, p. 298 If ''F'' is any field, the trivial extension F\supseteq F is purely inseparable; for the field ''F'' to possess a ''non-trivial'' purely inseparable extension, it must be imperfect as outlined in the above section. Several equivalent and more concrete definitions for the notion of a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Publications Mathématiques De L'IHÉS
''Publications Mathématiques de l'IHÉS'' is a peer-reviewed mathematical journal. It is published by Springer Science+Business Media on behalf of the Institut des Hautes Études Scientifiques, with the help of the Centre National de la Recherche Scientifique. The journal was established in 1959 and was published at irregular intervals, from one to five volumes a year. It is now biannual. The editor-in-chief is Claire Voisin (Collège de France). See also *''Annals of Mathematics'' *'' Journal of the American Mathematical Society'' *''Inventiones Mathematicae ''Inventiones Mathematicae'' is a mathematical journal published monthly by Springer Science+Business Media. It was established in 1966 and is regarded as one of the most prestigious mathematics journals in the world. The current managing editors ...'' External links * Back issues from 1959 to 2010 Mathematics journals Publications established in 1959 Springer Science+Business Media academic journals Biannual journal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Springer-Verlag
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second largest academic publisher with 65 staff in 1872.Chronology
". Springer Science+Business Media.
In 1964, Springer expanded its business internationally, o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]