RSGC1-F02
   HOME
*



picture info

RSGC1-F02
RSGC1-F02 is a red supergiant located in the RSGC1 open cluster in the constellation of Scutum. Its radius was calculated to be between 1,499 and 1,549 or 1,128 times that of the Sun (the radius is calculated applying the Stefan-Boltzmann law), making it one of the largest stars discovered so far. This corresponds to a volume 3.37 and 3.72 billion times bigger than the Sun. If placed at the center of the Solar System, its photosphere would engulf the orbit of Jupiter. See also * RSGC1-F01 RSGC1-F01 is a red supergiant located in the RSGC1 open cluster in the constellation of Scutum. The radius was calculated to be around 1,530 times that of the Sun (the radius is calculated by applying the Stefan-Bolzmann law), making it ... References Scutum (constellation) M-type supergiants TIC objects {{supergiant-star-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

List Of Largest Stars
Below are lists of the largest stars currently known, ordered by radius and separated into categories by galaxy. The unit of measurement used is the Solar radius, radius of the Sun (approximately ). The angular diameters of stars can be measured directly using Astronomical optical interferometry, stellar interferometry. Other methods can use lunar occultations or from eclipsing binaries, which can be used to test indirect methods of finding stellar radii. Only a few useful supergiant stars can be occulted by the Moon, including Antares A (Alpha Scorpii A). Examples of eclipsing binaries are Epsilon Aurigae (Almaaz), VV Cephei, and V766 Centauri (HR 5171). Angular diameter measurements can be inconsistent because the boundary of the very tenuous atmosphere (Opacity (optics), opacity) differs depending on the wavelength of light in which the star is observed. Uncertainties remain with the membership and order of the lists, especially when deriving various parameters used in calcu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




RSGC1
RSGC1 (''Red Supergiant Cluster 1'') is a young massive open cluster in the Milky Way galaxy. It was discovered in 2006 in the data generated by several infrared surveys, named for the unprecedented number of red supergiant members. The cluster is located in the constellation Scutum (constellation), Scutum at the distance of about 6.6 Parsec#Parsecs and kiloparsecs, kpc from the Sun. It is likely situated at the intersection of the northern end of the Barred spiral galaxy, Long Bar of the Milky Way and the inner portion of the Scutum–Centaurus Arm—one of its two major spiral arms. The age of RSGC1 is estimated at 10–14 million years. The cluster is heavily obscured and has not been detected in visible light. It lies close to other groupings of red supergiants known as Stephenson 2, RSGC3, Alicante 7, Alicante 8, and Alicante 10. The mass of RSGC1 is estimated at 30 thousand solar masses, which makes it one of the most massive open clusters in the Galaxy. The observed ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


RSGC1-F01
RSGC1-F01 is a red supergiant located in the RSGC1 open cluster in the constellation of Scutum. The radius was calculated to be around 1,530 times that of the Sun (the radius is calculated by applying the Stefan-Bolzmann law), making it one of the largest stars discovered so far. This corresponds to a volume 3.58 billion times bigger than the Sun. If placed at the center of the Solar System, the photosphere would engulf the orbit of Jupiter Jupiter is the fifth planet from the Sun and the largest in the Solar System. It is a gas giant with a mass more than two and a half times that of all the other planets in the Solar System combined, but slightly less than one-thousandth t .... See also * RSGC1-F02 References Scutum (constellation) M-type supergiants J18375629-0652322 TIC objects {{supergiant-star-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Scutum (constellation)
Scutum is a small constellation. Its name is Latin for shield, and it was originally named Scutum Sobiescianum by Johannes Hevelius in 1684. Located just south of the celestial equator, its four brightest stars form a narrow diamond shape. It is one of the 88 IAU designated constellations defined in 1922. History Scutum was named in 1684 by Polish astronomer Johannes Hevelius (Jan Heweliusz), who originally named it ''Scutum Sobiescianum'' (Shield of Sobieski) to commemorate the victory of the Christian forces led by Polish King John III Sobieski (Jan III Sobieski) in the Battle of Vienna in 1683. Later, the name was shortened to Scutum. Five bright stars of Scutum ( α Sct, β Sct, δ Sct, ε Sct and η Sct) were previously known as 1, 6, 2, 3, and 9 Aquilae respectively. The constellation of Scutum was adopted by the International Astronomical Union in 1922 as one of the 88 constellations covering the entire sky, with the official abbreviation of "Sct". The constella ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Monthly Notices Of The Royal Astronomical Society
''Monthly Notices of the Royal Astronomical Society'' (MNRAS) is a peer-reviewed scientific journal covering research in astronomy and astrophysics. It has been in continuous existence since 1827 and publishes letters and papers reporting original research in relevant fields. Despite the name, the journal is no longer monthly, nor does it carry the notices of the Royal Astronomical Society. History The first issue of MNRAS was published on 9 February 1827 as ''Monthly Notices of the Astronomical Society of London'' and it has been in continuous publication ever since. It took its current name from the second volume, after the Astronomical Society of London became the Royal Astronomical Society (RAS). Until 1960 it carried the monthly notices of the RAS, at which time these were transferred to the newly established ''Quarterly Journal of the Royal Astronomical Society'' (1960–1996) and then to its successor journal ''Astronomy & Geophysics'' (since 1997). Until 1965, MNRAS ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


The Astronomical Journal
''The Astronomical Journal'' (often abbreviated ''AJ'' in scientific papers and references) is a peer-reviewed monthly scientific journal owned by the American Astronomical Society (AAS) and currently published by IOP Publishing. It is one of the premier journals for astronomy in the world. Until 2008, the journal was published by the University of Chicago Press on behalf of the AAS. The reasons for the change to the IOP were given by the society as the desire of the University of Chicago Press to revise its financial arrangement and their plans to change from the particular software that had been developed in-house. The other two publications of the society, the ''Astrophysical Journal'' and its supplement series, followed in January 2009. The journal was established in 1849 by Benjamin A. Gould. It ceased publication in 1861 due to the American Civil War, but resumed in 1885. Between 1909 and 1941 the journal was edited in Albany, New York. In 1941, editor Benjamin Boss arrange ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Red Supergiant
Red supergiants (RSGs) are stars with a supergiant luminosity class ( Yerkes class I) of spectral type K or M. They are the largest stars in the universe in terms of volume, although they are not the most massive or luminous. Betelgeuse and Antares are the brightest and best known red supergiants (RSGs), indeed the only first magnitude red supergiant stars. Classification Stars are classified as supergiants on the basis of their spectral luminosity class. This system uses certain diagnostic spectral lines to estimate the surface gravity of a star, hence determining its size relative to its mass. Larger stars are more luminous at a given temperature and can now be grouped into bands of differing luminosity. The luminosity differences between stars are most apparent at low temperatures, where giant stars are much brighter than main-sequence stars. Supergiants have the lowest surface gravities and hence are the largest and brightest at a particular temperature. The ''Yerkes'' o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Open Cluster
An open cluster is a type of star cluster made of up to a few thousand stars that were formed from the same giant molecular cloud and have roughly the same age. More than 1,100 open clusters have been discovered within the Milky Way galaxy, and many more are thought to exist. They are loosely bound by mutual gravity, gravitational attraction and become disrupted by close encounters with other clusters and clouds of gas as they orbit the Galactic Center. This can result in a migration to the main body of the galaxy and a loss of cluster members through internal close encounters. Open clusters generally survive for a few hundred million years, with the most massive ones surviving for a few billion years. In contrast, the more massive globular clusters of stars exert a stronger gravitational attraction on their members, and can survive for longer. Open clusters have been found only in spiral galaxy, spiral and irregular galaxy, irregular galaxies, in which active star formation is o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Stefan–Boltzmann Law
The Stefan–Boltzmann law describes the power radiated from a black body in terms of its temperature. Specifically, the Stefan–Boltzmann law states that the total energy radiated per unit surface area of a black body across all wavelengths per unit time j^ (also known as the black-body ''radiant emittance'') is directly proportional to the fourth power of the black body's thermodynamic temperature ''T'': : j^ = \sigma T^. The constant of proportionality ''σ'', called the Stefan–Boltzmann constant, is derived from other known physical constants. Since 2019, the value of the constant is : \sigma=\frac = 5.670374419\times 10^\, \mathrm, where ''k'' is the Boltzmann constant, ''h'' is Planck's constant, and ''c'' is the speed of light in a vacuum. The radiance from a specified angle of view (watts per square metre per steradian) is given by : L = \frac\pi = \frac\sigma\pi T^. A body that does not absorb all incident radiation (sometimes known as a grey body) emits ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Solar System
The Solar SystemCapitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Solar System" and "solar system" structures in theinaming guidelines document. The name is commonly rendered in lower case ('solar system'), as, for example, in the ''Oxford English Dictionary'' an''Merriam-Webster's 11th Collegiate Dictionary''. is the gravity, gravitationally bound system of the Sun and the objects that orbit it. It Formation and evolution of the Solar System, formed 4.6 billion years ago from the gravitational collapse of a giant interstellar molecular cloud. The solar mass, vast majority (99.86%) of the system's mass is in the Sun, with most of the Jupiter mass, remaining mass contained in the planet Jupiter. The four inner Solar System, inner system planets—Mercury (planet), Mercury, Venus, Earth and Mars—are terrest ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Photosphere
The photosphere is a star's outer shell from which light is radiated. The term itself is derived from Ancient Greek roots, φῶς, φωτός/''phos, photos'' meaning "light" and σφαῖρα/''sphaira'' meaning "sphere", in reference to it being a spherical surface that is perceived to emit light. It extends into a star's surface until the plasma becomes opaque, equivalent to an optical depth of approximately , or equivalently, a depth from which 50% of light will escape without being scattered. A photosphere is the deepest region of a luminous object, usually a star, that is transparent to photons of certain wavelengths. Temperature The surface of a star is defined to have a temperature given by the effective temperature in the Stefan–Boltzmann law. Stars, except neutron stars, have no solid or liquid surface. Therefore, the photosphere is typically used to describe the Sun's or another star's visual surface. Composition of the Sun The Sun is composed primarily of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]