RNS Formalism
   HOME
*





RNS Formalism
Ramond–Neveu–Schwarz (RNS) formalism (named after Pierre Ramond, John H. Schwarz, and André Neveu) was an early attempt to introduce fermions through the means of supersymmetry into string theory. In this theory, worldsheet embedded in spacetime is regarded as a bosonic field and the fermionic fields are regarded as the vectors of spacetime. The theory can map out tachyon through GSO projection. Also, RNS formalism is equivalent to GS formalism which has spacetime supersymmetry but without worldsheet supersymmetry. See also * GS formalism *GSO projection *Kalb–Ramond field In theoretical physics in general and string theory in particular, the Kalb–Ramond field (named after Michael Kalb and Pierre Ramond), also known as the Kalb–Ramond ''B''-field or Kalb–Ramond NS–NS ''B''-field, is a quantum field that tran ... References References * Thomas Mohaupt (2002)"Introduction to String Theory" String theory {{string-theory-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pierre Ramond
Pierre Ramond (; born 31 January 1943) is distinguished professor of physics at University of Florida in Gainesville, Florida. He initiated the development of superstring theory. Academic career Ramond completed his BSEE from Newark College of Engineering (now New Jersey Institute of Technology) in 1965 and completed his Ph.D. in physics from Syracuse University in 1969. He was a postdoctoral fellow at NAL (FermiLab) from 1969 to 1971. He became instructor at Yale University from 1971 to 1973 and assistant professor at Yale University from 1973 to 1976. He moved to Caltech as an R. A. Millikan Senior Fellow in 1976. He became a professor of physics at University of Florida in 1980, and promoted to his present title of "distinguished professor" in 1999. Superstring theory Ramond initiated the development of superstring theory. In 1970, Ramond generalized Dirac's work for point-like particles to stringlike ones. In this process he discovered two-dimensional supersymmetry and laid ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


John H
John is a common English name and surname: * John (given name) * John (surname) John may also refer to: New Testament Works * Gospel of John, a title often shortened to John * First Epistle of John, often shortened to 1 John * Second Epistle of John, often shortened to 2 John * Third Epistle of John, often shortened to 3 John People * John the Baptist (died c. AD 30), regarded as a prophet and the forerunner of Jesus Christ * John the Apostle (lived c. AD 30), one of the twelve apostles of Jesus * John the Evangelist, assigned author of the Fourth Gospel, once identified with the Apostle * John of Patmos, also known as John the Divine or John the Revelator, the author of the Book of Revelation, once identified with the Apostle * John the Presbyter, a figure either identified with or distinguished from the Apostle, the Evangelist and John of Patmos Other people with the given name Religious figures * John, father of Andrew the Apostle and Saint Peter * Pope Jo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


André Neveu
André Neveu (; born 28 August 1946) is a French physicist working on string theory and quantum field theory who coinvented the Neveu–Schwarz algebra and the Gross–Neveu model. Biography Neveu studied in Paris at the École Normale Supérieure (ENS). In 1969 he received his diploma (Thèse de troisième cycle) at University of Paris XI in Orsay with and Claude Bouchiat and in 1971 he completed his doctorate (Doctorat d'État) there. In 1969 he and his classmate from ENS and Orsay, Joël Scherk, together with John H. Schwarz and David Gross at Princeton University, examined divergences in one-loop diagrams of the bosonic string theory (and discovered the cause of tachyon divergences). From 1971 to 1974 Neveu was at the Laboratory for High Energy Physics of the University of Paris XI where he and Scherk showed that spin-1 excitations of strings could describe Yang–Mills theories. In 1971, Neveu with John Schwarz in Princeton developed, at the same time as Pierre Ramo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Supersymmetry
In a supersymmetric theory the equations for force and the equations for matter are identical. In theoretical and mathematical physics, any theory with this property has the principle of supersymmetry (SUSY). Dozens of supersymmetric theories exist. Supersymmetry is a spacetime symmetry between two basic classes of particles: bosons, which have an integer-valued spin and follow Bose–Einstein statistics, and fermions, which have a half-integer-valued spin and follow Fermi–Dirac statistics. In supersymmetry, each particle from one class would have an associated particle in the other, known as its superpartner, the spin of which differs by a half-integer. For example, if the electron exists in a supersymmetric theory, then there would be a particle called a ''"selectron"'' (superpartner electron), a bosonic partner of the electron. In the simplest supersymmetry theories, with perfectly " unbroken" supersymmetry, each pair of superpartners would share the same mass and intern ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


GSO Projection
The GSO projection (named after Ferdinando Gliozzi, Joël Scherk, and David I. Olive) F. Gliozzi, J. Scherk and D. I. Olive, "Supersymmetry, Supergravity Theories and the Dual Spinor Model", ''Nucl. Phys. B'' 122 (1977), 253. is an ingredient used in constructing a consistent model in superstring theory. The projection is a selection of a subset of possible vertex operators in the worldsheet conformal field theory (CFT)—usually those with specific worldsheet fermion number and periodicity conditions. Such a projection is necessary to obtain a consistent worldsheet CFT. For the projection to be consistent, the set ''A'' of operators retained by the projection must satisfy: * Closure — The operator product expansion (OPE) of any two operators in ''A'' contains only operators which are in ''A''. * Mutual locality — There are no branch cuts in the OPE of any two operators in the set ''A''. * Modular invariance — The partition function on the two-torus of the theory cont ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


GS Formalism
Green–Schwarz (GS) formalism (named after Michael Green and John H. Schwarz) is an attempt to introduce fermions in string theory. The theory is equivalent to RNS formalism which has been GSO projected. This theory is very hard to quantize, being straightforward to quantize only in light cone gauge. A covariant quantization of spinning string, maintaining space-time supersymmetry manifest, is possible in a formalism inspired on the GS formalism, known as pure spinor formalism.N. Bekovits, "Super-Poincaré covariant quantization of the superstring." Journal of High Energy Physics 2000.04 (2000): 018. See also * Supersymmetry *RNS formalism Ramond–Neveu–Schwarz (RNS) formalism (named after Pierre Ramond, John H. Schwarz, and André Neveu) was an early attempt to introduce fermions through the means of supersymmetry into string theory. In this theory, worldsheet embedded in spac ... Notes category:string theory {{string-theory-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kalb–Ramond Field
In theoretical physics in general and string theory in particular, the Kalb–Ramond field (named after Michael Kalb and Pierre Ramond), also known as the Kalb–Ramond ''B''-field or Kalb–Ramond NS–NS ''B''-field, is a quantum field that transforms as a two- form, i.e., an antisymmetric tensor field with two indices. The adjective "NS" reflects the fact that in the RNS formalism, these fields appear in the NS–NS sector in which all vector fermions are anti-periodic. Both uses of the word "NS" refer to André Neveu and John Henry Schwarz, who studied such boundary conditions (the so-called Neveu–Schwarz boundary conditions) and the fields that satisfy them in 1971. Details The Kalb–Ramond field generalizes the electromagnetic potential but it has two indices instead of one. This difference is related to the fact that the electromagnetic potential is integrated over one-dimensional worldlines of particles to obtain one of its contributions to the action while the Kalb†...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]