Quintic Threefold
   HOME
*





Quintic Threefold
In mathematics, a quintic threefold is a 3-dimensional hypersurface of degree 5 in 4-dimensional projective space \mathbb^4. Non-singular quintic threefolds are Calabi–Yau manifolds. The Hodge diamond of a non-singular quintic 3-fold is Mathematician Robbert Dijkgraaf said "One number which every algebraic geometer knows is the number 2,875 because obviously, that is the number of lines on a quintic." Definition A quintic threefold is a special class of Calabi–Yau manifolds defined by a degree 5 projective variety in \mathbb^4. Many examples are constructed as hypersurfaces in \mathbb^4, or complete intersections lying in \mathbb^4, or as a smooth variety resolving the singularities of another variety. As a set, a Calabi-Yau manifold isX = \where p(x) is a degree 5 homogeneous polynomial. One of the most studied examples is from the polynomialp(x) = x_0^5 + x_1^5 + x_2^5 + x_3^5 + x_4^5called a Fermat polynomial. Proving that such a polynomial defines a Calabi-Yau requires ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Projective Space
In mathematics, the concept of a projective space originated from the visual effect of perspective, where parallel lines seem to meet ''at infinity''. A projective space may thus be viewed as the extension of a Euclidean space, or, more generally, an affine space with points at infinity, in such a way that there is one point at infinity of each direction of parallel lines. This definition of a projective space has the disadvantage of not being isotropic, having two different sorts of points, which must be considered separately in proofs. Therefore, other definitions are generally preferred. There are two classes of definitions. In synthetic geometry, ''point'' and ''line'' are primitive entities that are related by the incidence relation "a point is on a line" or "a line passes through a point", which is subject to the axioms of projective geometry. For some such set of axioms, the projective spaces that are defined have been shown to be equivalent to those resulting from the fol ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mirror Symmetry (string Theory)
In algebraic geometry and theoretical physics, mirror symmetry is a relationship between geometric objects called Calabi–Yau manifolds. The term refers to a situation where two Calabi–Yau manifolds look very different geometrically but are nevertheless equivalent when employed as extra dimensions of string theory. Early cases of mirror symmetry were discovered by physicists. Mathematicians became interested in this relationship around 1990 when Philip Candelas, Xenia de la Ossa, Paul Green, and Linda Parkes showed that it could be used as a tool in enumerative geometry, a branch of mathematics concerned with counting the number of solutions to geometric questions. Candelas and his collaborators showed that mirror symmetry could be used to count rational curves on a Calabi–Yau manifold, thus solving a longstanding problem. Although the original approach to mirror symmetry was based on physical ideas that were not understood in a mathematically precise way, some of its mathem ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Jacobian Ideal
In mathematics the Jacobian ideal or gradient ideal is the ideal generated by the Jacobian of a function or function germ. Let \mathcal(x_1,\ldots,x_n) denote the ring of smooth functions in n variables and f a function in the ring. The Jacobian ideal of f is : J_f := \left\langle \frac, \ldots, \frac \right\rangle. Relation to deformation theory In deformation theory, the deformations of a hypersurface given by a polynomial f is classified by the ring \frac This is shown using the Kodaira–Spencer map. Relation to Hodge theory In Hodge theory, there are objects called real Hodge structures which are the data of a real vector space H_\mathbb and an increasing filtration F^\bullet of H_\mathbb = H_\mathbb\otimes_\mathbb satisfying a list of compatibility structures. For a smooth projective variety X there is a canonical Hodge structure. Statement for degree d hypersurfaces In the special case X is defined by a homogeneous degree d polynomial f \in \Gamma(\mathbb^,\ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gromov–Witten Invariant
In mathematics, specifically in symplectic topology and algebraic geometry, Gromov–Witten (GW) invariants are rational numbers that, in certain situations, count pseudoholomorphic curves meeting prescribed conditions in a given symplectic manifold. The GW invariants may be packaged as a homology or cohomology class in an appropriate space, or as the deformed cup product of quantum cohomology. These invariants have been used to distinguish symplectic manifolds that were previously indistinguishable. They also play a crucial role in closed type IIA string theory. They are named after Mikhail Gromov and Edward Witten. The rigorous mathematical definition of Gromov–Witten invariants is lengthy and difficult, so it is treated separately in the stable map article. This article attempts a more intuitive explanation of what the invariants mean, how they are computed, and why they are important. Definition Consider the following: *''X'': a closed symplectic manifold of dimensi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Euler Class
In mathematics, specifically in algebraic topology, the Euler class is a characteristic class of oriented, real vector bundles. Like other characteristic classes, it measures how "twisted" the vector bundle is. In the case of the tangent bundle of a smooth manifold, it generalizes the classical notion of Euler characteristic. It is named after Leonhard Euler because of this. Throughout this article E is an oriented, real vector bundle of rank r over a base space X. Formal definition The Euler class e(E) is an element of the integral cohomology group :H^r(X; \mathbf), constructed as follows. An orientation of E amounts to a continuous choice of generator of the cohomology :H^r(\mathbf^, \mathbf^ \setminus \; \mathbf)\cong \tilde^(S^;\mathbf)\cong \mathbf of each fiber \mathbf^ relative to the complement \mathbf^ \setminus \ of zero. From the Thom isomorphism, this induces an orientation class :u \in H^r(E, E \setminus E_0; \mathbf) in the cohomology of E relative to the co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Splitting Principle
In mathematics, the splitting principle is a technique used to reduce questions about vector bundles to the case of line bundles. In the theory of vector bundles, one often wishes to simplify computations, say of Chern classes. Often computations are well understood for line bundles and for direct sums of line bundles. In this case the splitting principle can be quite useful. The theorem above holds for complex vector bundles and integer coefficients or for real vector bundles with \mathbb_2 coefficients. In the complex case, the line bundles L_i or their first characteristic classes are called Chern roots. The fact that p^*\colon H^*(X)\rightarrow H^*(Y) is injective means that any equation which holds in H^*(Y) (say between various Chern classes) also holds in H^*(X). The point is that these equations are easier to understand for direct sums of line bundles than for arbitrary vector bundles, so equations should be understood in Y and then pushed down to X. Since vector bu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Chow Ring
In algebraic geometry, the Chow groups (named after Wei-Liang Chow by ) of an algebraic variety over any field are algebro-geometric analogs of the homology of a topological space. The elements of the Chow group are formed out of subvarieties (so-called algebraic cycles) in a similar way to how simplicial or cellular homology groups are formed out of subcomplexes. When the variety is smooth, the Chow groups can be interpreted as cohomology groups (compare Poincaré duality) and have a multiplication called the intersection product. The Chow groups carry rich information about an algebraic variety, and they are correspondingly hard to compute in general. Rational equivalence and Chow groups For what follows, define a variety over a field k to be an integral scheme of finite type over k. For any scheme X of finite type over k, an algebraic cycle on X means a finite linear combination of subvarieties of X with integer coefficients. (Here and below, subvarieties are understood to b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Chern Class
In mathematics, in particular in algebraic topology, differential geometry and algebraic geometry, the Chern classes are characteristic classes associated with complex vector bundles. They have since found applications in physics, Calabi–Yau manifolds, string theory, Chern–Simons theory, knot theory, Gromov–Witten invariants, topological quantum field theory, the Chern theorem etc. Chern classes were introduced by . Geometric approach Basic idea and motivation Chern classes are characteristic classes. They are topological invariants associated with vector bundles on a smooth manifold. The question of whether two ostensibly different vector bundles are the same can be quite hard to answer. The Chern classes provide a simple test: if the Chern classes of a pair of vector bundles do not agree, then the vector bundles are different. The converse, however, is not true. In topology, differential geometry, and algebraic geometry, it is often important to count how many l ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Descent Theory
In mathematics, the idea of descent extends the intuitive idea of 'gluing' in topology. Since the topologists' glue is the use of equivalence relations on topological spaces, the theory starts with some ideas on identification. Descent of vector bundles The case of the construction of vector bundles from data on a disjoint union of topological spaces is a straightforward place to start. Suppose ''X'' is a topological space covered by open sets ''Xi''. Let ''Y'' be the disjoint union of the ''Xi'', so that there is a natural mapping :p: Y \rightarrow X. We think of ''Y'' as 'above' ''X'', with the ''Xi'' projection 'down' onto ''X''. With this language, ''descent'' implies a vector bundle on ''Y ''(so, a bundle given on each ''Xi''), and our concern is to 'glue' those bundles ''Vi'', to make a single bundle ''V'' on X. What we mean is that ''V'' should, when restricted to ''Xi'', give back ''Vi'', up to a bundle isomorphism. The data needed is then this: on each overlap :X_, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Grassmannian
In mathematics, the Grassmannian is a space that parameterizes all -Dimension, dimensional linear subspaces of the -dimensional vector space . For example, the Grassmannian is the space of lines through the origin in , so it is the same as the projective space of one dimension lower than . When is a real or complex vector space, Grassmannians are compact space, compact smooth manifolds. In general they have the structure of a smooth algebraic variety, of dimension k(n-k). The earliest work on a non-trivial Grassmannian is due to Julius Plücker, who studied the set of projective lines in projective 3-space, equivalent to and parameterized them by what are now called Plücker coordinates. Hermann Grassmann later introduced the concept in general. Notations for the Grassmannian vary between authors; notations include , , , or to denote the Grassmannian of -dimensional subspaces of an -dimensional vector space . Motivation By giving a collection of subspaces of some vecto ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Schubert Calculus
In mathematics, Schubert calculus is a branch of algebraic geometry introduced in the nineteenth century by Hermann Schubert, in order to solve various counting problems of projective geometry (part of enumerative geometry). It was a precursor of several more modern theories, for example characteristic classes, and in particular its algorithmic aspects are still of current interest. The phrase "Schubert calculus" is sometimes used to mean the enumerative geometry of linear subspaces, roughly equivalent to describing the cohomology ring of Grassmannians, and sometimes used to mean the more general enumerative geometry of nonlinear varieties. Even more generally, "Schubert calculus" is often understood to encompass the study of analogous questions in generalized cohomology theories. The objects introduced by Schubert are the Schubert cells, which are locally closed sets in a Grassmannian defined by conditions of incidence of a linear subspace in projective space with a given flag. F ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]