Quasitrace
   HOME
*





Quasitrace
In mathematics, especially functional analysis, a quasitrace is a not necessarily additive tracial functional on a C*-algebra In mathematics, specifically in functional analysis, a C∗-algebra (pronounced "C-star") is a Banach algebra together with an involution satisfying the properties of the adjoint. A particular case is that of a complex algebra ''A'' of continuous .... An additive quasitrace is called a trace. It is a major open problem if every quasitrace is a trace. Definition A quasitrace on a C*-algebra ''A'' is a map \tau\colon A_+\to ,\infty/math> such that: * \tau is homogeneous: ::\tau(\lambda a)=\lambda\tau(a) for every a\in A_+ and \lambda\in commuting elements: \tau(a+b)=\tau(a)+\tau(b) for every a,b\in A_+ that satisfy ab=ba. * and such that for each n\geq 1 the induced map ::\tau_n\colon M_n(A)_+\to[0,\infty], (a_)_\mapsto\tau(a_)+...\tau(a_) has the same properties. A quasitrace \tau is: * bounded if ::\sup\ that is just homogeneous, tracial and addit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Uffe Haagerup
Uffe Valentin Haagerup (19 December 1949 – 5 July 2015) was a mathematician from Denmark. Biography Uffe Haagerup was born in Kolding, but grew up on the island of Funen, in the small town of Fåborg. The field of mathematics had his interest from early on, encouraged and inspired by his older brother. In fourth grade Uffe was doing trigonometric and logarithmic calculations. He graduated as a student from Svendborg Gymnasium in 1968, whereupon he relocated to Copenhagen and immediately began his studies of mathematics and physics at the University of Copenhagen, again inspired by his older brother who also studied the same subjects at the same university. Early university studies in Einstein's general theory of relativity and quantum mechanics, sparked a lasting interest in the mathematical field of operator algebra, in particular Von Neumann algebra and Tomita–Takesaki theory. In 1974 he received his Candidate's degree ( cand. scient.) from the University of Copenhagen a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Functional Analysis
Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (e.g. Inner product space#Definition, inner product, Norm (mathematics)#Definition, norm, Topological space#Definition, topology, etc.) and the linear transformation, linear functions defined on these spaces and respecting these structures in a suitable sense. The historical roots of functional analysis lie in the study of function space, spaces of functions and the formulation of properties of transformations of functions such as the Fourier transform as transformations defining continuous function, continuous, unitary operator, unitary etc. operators between function spaces. This point of view turned out to be particularly useful for the study of differential equations, differential and integral equations. The usage of the word ''functional (mathematics), functional'' as a noun goes back to the calculus of variati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


C*-algebra
In mathematics, specifically in functional analysis, a C∗-algebra (pronounced "C-star") is a Banach algebra together with an involution satisfying the properties of the adjoint. A particular case is that of a complex algebra ''A'' of continuous linear operators on a complex Hilbert space with two additional properties: * ''A'' is a topologically closed set in the norm topology of operators. * ''A'' is closed under the operation of taking adjoints of operators. Another important class of non-Hilbert C*-algebras includes the algebra C_0(X) of complex-valued continuous functions on ''X'' that vanish at infinity, where ''X'' is a locally compact Hausdorff space. C*-algebras were first considered primarily for their use in quantum mechanics to model algebras of physical observables. This line of research began with Werner Heisenberg's matrix mechanics and in a more mathematically developed form with Pascual Jordan around 1933. Subsequently, John von Neumann attempted to establi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Commutative Property
In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Most familiar as the name of the property that says something like or , the property can also be used in more advanced settings. The name is needed because there are operations, such as division and subtraction, that do not have it (for example, ); such operations are ''not'' commutative, and so are referred to as ''noncommutative operations''. The idea that simple operations, such as the multiplication and addition of numbers, are commutative was for many years implicitly assumed. Thus, this property was not named until the 19th century, when mathematics started to become formalized. A similar property exists for binary relations; a binary relation is said to be symmetric if the relation applies regardless of the order of its operands; for example, equality is symme ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Exact C*-algebra
In mathematics, an exact C*-algebra is a C*-algebra that preserves exact sequences under the minimum tensor product. Definition A C*-algebra In mathematics, specifically in functional analysis, a C∗-algebra (pronounced "C-star") is a Banach algebra together with an involution satisfying the properties of the adjoint. A particular case is that of a complex algebra ''A'' of continuous ... ''E'' is exact if, for any short exact sequence, :0 \;\xrightarrow\; A \;\xrightarrow\; B \;\xrightarrow\; C \;\xrightarrow\; 0 the sequence :0\;\xrightarrow\; A \otimes_\min E\;\xrightarrow\; B\otimes_\min E \;\xrightarrow\; C\otimes_\min E \;\xrightarrow\; 0, where ⊗min denotes the minimum tensor product, is also exact. Properties * Every nuclear C*-algebra is exact. * Every sub-C*-algebra and every quotient of an exact C*-algebra is exact. An extension of exact C*-algebras is not exact in general. * It follows that every sub-C*-algebra of a nuclear C*-algebra is exact. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Von Neumann Algebra
In mathematics, a von Neumann algebra or W*-algebra is a *-algebra of bounded operators on a Hilbert space that is closed in the weak operator topology and contains the identity operator. It is a special type of C*-algebra. Von Neumann algebras were originally introduced by John von Neumann, motivated by his study of single operators, group representations, ergodic theory and quantum mechanics. His double commutant theorem shows that the analytic definition is equivalent to a purely algebraic definition as an algebra of symmetries. Two basic examples of von Neumann algebras are as follows: *The ring L^\infty(\mathbb R) of essentially bounded measurable functions on the real line is a commutative von Neumann algebra, whose elements act as multiplication operators by pointwise multiplication on the Hilbert space L^2(\mathbb R) of square-integrable functions. *The algebra \mathcal B(\mathcal H) of all bounded operators on a Hilbert space \mathcal H is a von Neumann algebr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]