Quasibarrelled Space
   HOME
*





Quasibarrelled Space
In functional analysis and related areas of mathematics, quasibarrelled spaces are topological vector spaces (TVS) for which every bornivorous barrelled set in the space is a Neighbourhood (topology), neighbourhood of the origin. Quasibarrelled spaces are studied because they are a weakening of the defining condition of barrelled spaces, for which a form of the Banach–Steinhaus theorem holds. Definition A subset B of a topological vector space (TVS) X is called bornivorous if it absorbs all bounded subsets of X; that is, if for each bounded subset S of X, there exists some scalar r such that S \subseteq r B. A barrelled set or a barrel in a TVS is a Set (mathematics), set which is Convex set, convex, Balanced set, balanced, Absorbing set, absorbing and Closed set, closed. A quasibarrelled space is a TVS for which every bornivorous barrelled set in the space is a Neighbourhood (topology), neighbourhood of the origin. Properties A locally convex Hausdorff quasibarrelled sp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Functional Analysis
Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (e.g. inner product, norm, topology, etc.) and the linear functions defined on these spaces and respecting these structures in a suitable sense. The historical roots of functional analysis lie in the study of spaces of functions and the formulation of properties of transformations of functions such as the Fourier transform as transformations defining continuous, unitary etc. operators between function spaces. This point of view turned out to be particularly useful for the study of differential and integral equations. The usage of the word '' functional'' as a noun goes back to the calculus of variations, implying a function whose argument is a function. The term was first used in Hadamard's 1910 book on that subject. However, the general concept of a functional had previously been introduced in 1887 by the I ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


σ-barrelled Space
In functional analysis, a topological vector space (TVS) is said to be countably barrelled if every weakly bounded countable union of equicontinuous subsets of its continuous dual space is again equicontinuous. This property is a generalization of barrelled spaces. Definition A TVS ''X'' with continuous dual space X^ is said to be countably barrelled if B^ \subseteq X^ is a weak-* bounded subset of X^ that is equal to a countable union of equicontinuous subsets of X^, then B^ is itself equicontinuous. A Hausdorff locally convex TVS is countably barrelled if and only if each barrel in ''X'' that is equal to the countable intersection of closed convex balanced neighborhoods of 0 is itself a neighborhood of 0. σ-barrelled space A TVS with continuous dual space X^ is said to be σ-barrelled if every weak-* bounded (countable) sequence in X^ is equicontinuous. Sequentially barrelled space A TVS with continuous dual space X^ is said to be sequentially barrelled if every ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fréchet Space
In functional analysis and related areas of mathematics, Fréchet spaces, named after Maurice Fréchet, are special topological vector spaces. They are generalizations of Banach spaces ( normed vector spaces that are complete with respect to the metric induced by the norm). All Banach and Hilbert spaces are Fréchet spaces. Spaces of infinitely differentiable functions are typical examples of Fréchet spaces, many of which are typically Banach spaces. A Fréchet space X is defined to be a locally convex metrizable topological vector space (TVS) that is complete as a TVS, meaning that every Cauchy sequence in X converges to some point in X (see footnote for more details).Here "Cauchy" means Cauchy with respect to the canonical uniformity that every TVS possess. That is, a sequence x_ = \left(x_m\right)_^ in a TVS X is Cauchy if and only if for all neighborhoods U of the origin in X, x_m - x_n \in U whenever m and n are sufficiently large. Note that this definition of a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Strong Dual Space
In functional analysis and related areas of mathematics, the strong dual space of a topological vector space (TVS) X is the continuous dual space X^ of X equipped with the strong (dual) topology or the topology of uniform convergence on bounded subsets of X, where this topology is denoted by b\left(X^, X\right) or \beta\left(X^, X\right). The coarsest polar topology is called weak topology. The strong dual space plays such an important role in modern functional analysis, that the continuous dual space is usually assumed to have the strong dual topology unless indicated otherwise. To emphasize that the continuous dual space, X^, has the strong dual topology, X^_b or X^_ may be written. Strong dual topology Throughout, all vector spaces will be assumed to be over the field \mathbb of either the real numbers \R or complex numbers \C. Definition from a dual system Let (X, Y, \langle \cdot, \cdot \rangle) be a dual pair of vector spaces over the field \mathbb of real number ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


DF-space
In the field of functional analysis, DF-spaces, also written (''DF'')-spaces are locally convex topological vector space having a property that is shared by locally convex metrizable topological vector spaces. They play a considerable part in the theory of topological tensor products. DF-spaces were first defined by Alexander Grothendieck and studied in detail by him in . Grothendieck was led to introduce these spaces by the following property of strong duals of metrizable spaces: If X is a metrizable locally convex space and V_1, V_2, \ldots is a sequence of convex 0-neighborhoods in X^_b such that V := \cap_ V_i absorbs every strongly bounded set, then V is a 0-neighborhood in X^_b (where X^_b is the continuous dual space of X endowed with the strong dual topology). Definition A locally convex topological vector space (TVS) X is a DF-space, also written (''DF'')-space, if # X is a countably quasi-barrelled space (i.e. every strongly bounded countable union of equicontinu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Distinguished Space
In functional analysis and related areas of mathematics, distinguished spaces are topological vector spaces (TVSs) having the property that weak-* bounded subsets of their biduals (that is, the strong dual space of their strong dual space) are contained in the weak-* closure of some bounded subset of the bidual. Definition Suppose that X is a locally convex space and let X^ and X^_b denote the strong dual of X (that is, the continuous dual space of X endowed with the strong dual topology). Let X^ denote the continuous dual space of X^_b and let X^_b denote the strong dual of X^_b. Let X^_ denote X^ endowed with the weak-* topology induced by X^, where this topology is denoted by \sigma\left(X^, X^\right) (that is, the topology of pointwise convergence on X^). We say that a subset W of X^ is \sigma\left(X^, X^\right)-bounded if it is a bounded subset of X^_ and we call the closure of W in the TVS X^_ the \sigma\left(X^, X^\right)-closure of W. If B is a subset of X then ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Metrizable TVS
In functional analysis and related areas of mathematics, a metrizable (resp. pseudometrizable) topological vector space (TVS) is a TVS whose topology is induced by a metric (resp. pseudometric). An LM-space is an inductive limit of a sequence of locally convex metrizable TVS. Pseudometrics and metrics A pseudometric on a set X is a map d : X \times X \rarr \R satisfying the following properties: d(x, x) = 0 \text x \in X; Symmetry: d(x, y) = d(y, x) \text x, y \in X; Subadditivity: d(x, z) \leq d(x, y) + d(y, z) \text x, y, z \in X. A pseudometric is called a metric if it satisfies: Identity of indiscernibles: for all x, y \in X, if d(x, y) = 0 then x = y. Ultrapseudometric A pseudometric d on X is called a ultrapseudometric or a strong pseudometric if it satisfies: Strong/Ultrametric triangle inequality: d(x, z) \leq \max \ \text x, y, z \in X. Pseudometric space A pseudometric space is a pair (X, d) consisting of a set X and a pseudometric d on X such that X's ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Bornological Space
In mathematics, particularly in functional analysis, a bornological space is a type of space which, in some sense, possesses the minimum amount of structure needed to address questions of boundedness of sets and linear maps, in the same way that a topological space possesses the minimum amount of structure needed to address questions of continuity. Bornological spaces are distinguished by the property that a linear map from a bornological space into any locally convex spaces is continuous if and only if it is a bounded linear operator. Bornological spaces were first studied by George Mackey. The name was coined by Bourbaki after , the French word for " bounded". Bornologies and bounded maps A on a set X is a collection \mathcal of subsets of X that satisfy all the following conditions: \mathcal covers X; that is, X = \cup \mathcal; \mathcal is stable under inclusions; that is, if B \in \mathcal and A \subseteq B, then A \in \mathcal; \mathcal is stable under finite unions; ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bornological Space
In mathematics, particularly in functional analysis, a bornological space is a type of space which, in some sense, possesses the minimum amount of structure needed to address questions of boundedness of sets and linear maps, in the same way that a topological space possesses the minimum amount of structure needed to address questions of continuity. Bornological spaces are distinguished by the property that a linear map from a bornological space into any locally convex spaces is continuous if and only if it is a bounded linear operator. Bornological spaces were first studied by George Mackey. The name was coined by Bourbaki after , the French word for " bounded". Bornologies and bounded maps A on a set X is a collection \mathcal of subsets of X that satisfy all the following conditions: \mathcal covers X; that is, X = \cup \mathcal; \mathcal is stable under inclusions; that is, if B \in \mathcal and A \subseteq B, then A \in \mathcal; \mathcal is stable under finite unions; ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Strong Dual
In functional analysis and related areas of mathematics, the strong dual space of a topological vector space (TVS) X is the continuous dual space X^ of X equipped with the strong (dual) topology or the topology of uniform convergence on bounded subsets of X, where this topology is denoted by b\left(X^, X\right) or \beta\left(X^, X\right). The coarsest polar topology is called weak topology. The strong dual space plays such an important role in modern functional analysis, that the continuous dual space is usually assumed to have the strong dual topology unless indicated otherwise. To emphasize that the continuous dual space, X^, has the strong dual topology, X^_b or X^_ may be written. Strong dual topology Throughout, all vector spaces will be assumed to be over the field \mathbb of either the real numbers \R or complex numbers \C. Definition from a dual system Let (X, Y, \langle \cdot, \cdot \rangle) be a dual pair of vector spaces over the field \mathbb of real number ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Locally Convex Space
In functional analysis and related areas of mathematics, locally convex topological vector spaces (LCTVS) or locally convex spaces are examples of topological vector spaces (TVS) that generalize normed spaces. They can be defined as topological vector spaces whose topology is generated by translations of balanced, absorbent, convex sets. Alternatively they can be defined as a vector space with a family of seminorms, and a topology can be defined in terms of that family. Although in general such spaces are not necessarily normable, the existence of a convex local base for the zero vector is strong enough for the Hahn–Banach theorem to hold, yielding a sufficiently rich theory of continuous linear functionals. Fréchet spaces are locally convex spaces that are completely metrizable (with a choice of complete metric). They are generalizations of Banach spaces, which are complete vector spaces with respect to a metric generated by a norm. History Metrizable topologies ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




F-space
In functional analysis, an F-space is a vector space X over the real or complex numbers together with a metric d : X \times X \to \R such that # Scalar multiplication in X is continuous with respect to d and the standard metric on \R or \Complex. # Addition in X is continuous with respect to d. # The metric is translation-invariant; that is, d(x + a, y + a) = d(x, y) for all x, y, a \in X. # The metric space (X, d) is complete. The operation x \mapsto \, x\, := d(0, x) is called an F-norm, although in general an F-norm is not required to be homogeneous. By translation-invariance, the metric is recoverable from the F-norm. Thus, a real or complex F-space is equivalently a real or complex vector space equipped with a complete F-norm. Some authors use the term rather than , but usually the term "Fréchet space" is reserved for locally convex F-spaces. Some other authors use the term "F-space" as a synonym of "Fréchet space", by which they mean a locally convex complete metr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]