HOME
*





Quintuple Product Identity
In mathematics the Watson quintuple product identity is an infinite product identity introduced by and rediscovered by and . It is analogous to the Jacobi triple product identity, and is the Macdonald identity for a certain non-reduced affine root system. It is related to Euler's pentagonal number theorem. Statement : \prod_ (1-s^n)(1-s^nt)(1-s^t^)(1-s^t^2)(1-s^t^) = \sum_s^(t^-t^) References * * * *{{Citation , last1=Watson , first1=G. N. , title=Theorems stated by Ramanujan. VII: Theorems on continued fractions. , doi=10.1112/jlms/s1-4.1.39 , jfm=55.0273.01 , year=1929 , journal=Journal of the London Mathematical Society , issn=0024-6107 , volume=4 , issue=1 , pages=39–48 * Foata, D., & Han, G. N. (2001). The triple, quintuple and septuple product identities revisited. In The Andrews Festschrift (pp. 323–334). Springer, Berlin, Heidelberg. * Cooper, S. (2006). The quintuple product identity. International Journal of Number Theory, 2(01), 115-161. Further ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Jacobi Triple Product Identity
In mathematics, the Jacobi triple product is the mathematical identity: :\prod_^\infty \left( 1 - x^\right) \left( 1 + x^ y^2\right) \left( 1 +\frac\right) = \sum_^\infty x^ y^, for complex numbers ''x'' and ''y'', with , ''x'', < 1 and ''y'' ≠ 0. It was introduced by in his work ''Fundamenta Nova Theoriae Functionum Ellipticarum''. The Jacobi triple product identity is the Macdonald identity for the affine root system of type ''A''1, and is the Weyl denominator formula for the corresponding affine Kac–Moody algebra. Properties The basis of Jacobi's proof relies on Euler's pentagonal number theorem, which is itself a specific case of the Jacobi Triple Product Identity. Let x=q\sqrt q and y^2=-\sqrt. Then we have :\phi(q) = \prod_^\infty \left(1-q^m \right) = \sum_^\infty (-1)^n q^. The Jacobi Triple Product also allows the Jacobi theta function to be written as an infinite product as follows: Let x=e^ and y=e^. Then the Jacobi theta function : \vartheta(z; \ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Macdonald Identity
In mathematics, the Macdonald identities are some infinite product identities associated to affine root systems, introduced by . They include as special cases the Jacobi triple product identity, Watson's quintuple product identity In mathematics the Watson quintuple product identity is an infinite product identity introduced by and rediscovered by and . It is analogous to the Jacobi triple product identity, and is the Macdonald identity for a certain non-reduced affine roo ..., several identities found by , and a 10-fold product identity found by . and pointed out that the Macdonald identities are the analogs of the Weyl denominator formula for affine Kac–Moody algebras and superalgebras. References * * * * * *{{Citation , last1=Winquist , first1=Lasse , title=An elementary proof of p(11m+6) ≡ 0 mod 11 , mr=0236136 , year=1969 , journal=Journal of Combinatorial Theory , volume=6 , pages=56–59 , doi=10.1016/s0021-9800(69)80105-5, doi-access=free Lie algeb ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Affine Root System
In mathematics, an affine root system is a root system of affine-linear functions on a Euclidean space. They are used in the classification of affine Lie algebras and superalgebras, and semisimple ''p''-adic algebraic groups, and correspond to families of Macdonald polynomials. The reduced affine root systems were used by Kac and Moody in their work on Kac–Moody algebras. Possibly non-reduced affine root systems were introduced and classified by and (except that both these papers accidentally omitted the Dynkin diagram ). Definition Let ''E'' be an affine space and ''V'' the vector space of its translations. Recall that ''V'' acts faithfully and transitively on ''E''. In particular, if u,v \in E, then it is well defined an element in ''V'' denoted as u-v which is the only element w such that v+w=u. Now suppose we have a scalar product (\cdot,\cdot) on ''V''. This defines a metric on ''E'' as d(u,v)=\vert(u-v,u-v)\vert. Consider the vector space ''F'' of affine-linear fu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Pentagonal Number Theorem
In mathematics, the pentagonal number theorem, originally due to Euler, relates the product and series representations of the Euler function. It states that :\prod_^\left(1-x^\right)=\sum_^\left(-1\right)^x^=1+\sum_^\infty(-1)^k\left(x^+x^\right). In other words, :(1-x)(1-x^2)(1-x^3) \cdots = 1 - x - x^2 + x^5 + x^7 - x^ - x^ + x^ + x^ - \cdots. The exponents 1, 2, 5, 7, 12, ... on the right hand side are given by the formula for ''k'' = 1, −1, 2, −2, 3, ... and are called (generalized) pentagonal numbers . (The constant term 1 corresponds to k=0.) This holds as an identity of convergent power series for , x, ''s'', take the rightmost 45-degree line and move it to form a new row, as in the matching diagram below. : If m ≤ s (as in our newly formed diagram where ''m'' = 2, ''s'' = 5) we may reverse the process by moving the bottom row to form a new 45 degree line (adding 1 element to each of the first ''m'' rows), taking us back to the first diagram. A bit of though ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Proceedings Of The London Mathematical Society
The London Mathematical Society (LMS) is one of the United Kingdom's learned societies for mathematics (the others being the Royal Statistical Society (RSS), the Institute of Mathematics and its Applications (IMA), the Edinburgh Mathematical Society and the Operational Research Society (ORS). History The Society was established on 16 January 1865, the first president being Augustus De Morgan. The earliest meetings were held in University College, but the Society soon moved into Burlington House, Piccadilly. The initial activities of the Society included talks and publication of a journal. The LMS was used as a model for the establishment of the American Mathematical Society in 1888. Mary Cartwright was the first woman to be President of the LMS (in 1961–62). The Society was granted a royal charter in 1965, a century after its foundation. In 1998 the Society moved from rooms in Burlington House into De Morgan House (named after the society's first president), at 57†...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Proceedings Of The American Mathematical Society
''Proceedings of the American Mathematical Society'' is a monthly peer-reviewed scientific journal of mathematics published by the American Mathematical Society. As a requirement, all articles must be at most 15 printed pages. According to the ''Journal Citation Reports'', the journal has a 2018 impact factor of 0.813. Scope ''Proceedings of the American Mathematical Society'' publishes articles from all areas of pure and applied mathematics, including topology, geometry, analysis, algebra, number theory, combinatorics, logic, probability and statistics. Abstracting and indexing This journal is indexed in the following databases:Indexing and archiving notes
2011. American Mathematical Society. *

Journal Of Computational And Applied Mathematics
The ''Journal of Computational and Applied Mathematics'' is a peer-reviewed scientific journal covering computational and applied mathematics. It was established in 1975 and is published biweekly by Elsevier. The editors-in-chief are Yalchin Efendiev (Texas A&M University), Taketomo Mitsui (Nagoya University), Michael Kwok-Po Ng (Hong Kong Baptist University) and Fatih Tank (Ankara University). According to the ''Journal Citation Reports'', the journal has a 2021 impact factor The impact factor (IF) or journal impact factor (JIF) of an academic journal is a scientometric index calculated by Clarivate that reflects the yearly mean number of citations of articles published in the last two years in a given journal, as i ... of 2.872. References External links * {{Mathematics-journal-stub Biweekly journals Applied mathematics Mathematics journals Elsevier academic journals Publications established in 1975 English-language journals Computational mathematics ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Elliptic Functions
In the mathematical field of complex analysis, elliptic functions are a special kind of meromorphic functions, that satisfy two periodicity conditions. They are named elliptic functions because they come from elliptic integrals. Originally those integrals occurred at the calculation of the arc length of an ellipse. Important elliptic functions are Jacobi elliptic functions and the Weierstrass \wp-function. Further development of this theory led to hyperelliptic functions and modular forms. Definition A meromorphic function is called an elliptic function, if there are two \mathbb- linear independent complex numbers \omega_1,\omega_2\in\mathbb such that : f(z + \omega_1) = f(z) and f(z + \omega_2) = f(z), \quad \forall z\in\mathbb. So elliptic functions have two periods and are therefore also called ''doubly periodic''. Period lattice and fundamental domain Iff is an elliptic function with periods \omega_1,\omega_2 it also holds that : f(z+\gamma)=f(z) for every lin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Theta Functions
In mathematics, theta functions are special functions of several complex variables. They show up in many topics, including Abelian varieties, moduli spaces, quadratic forms, and solitons. As Grassmann algebras, they appear in quantum field theory. The most common form of theta function is that occurring in the theory of elliptic functions. With respect to one of the complex variables (conventionally called ), a theta function has a property expressing its behavior with respect to the addition of a period of the associated elliptic functions, making it a quasiperiodic function. In the abstract theory this quasiperiodicity comes from the cohomology class of a line bundle on a complex torus, a condition of descent. One interpretation of theta functions when dealing with the heat equation is that "a theta function is a special function that describes the evolution of temperature on a segment domain subject to certain boundary conditions". Throughout this article, (e^)^ should be ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematical Identities
In mathematics, an identity is an equality relating one mathematical expression ''A'' to another mathematical expression ''B'', such that ''A'' and ''B'' (which might contain some variables) produce the same value for all values of the variables within a certain range of validity. In other words, ''A'' = ''B'' is an identity if ''A'' and ''B'' define the same functions, and an identity is an equality between functions that are differently defined. For example, (a+b)^2 = a^2 + 2ab + b^2 and \cos^2\theta + \sin^2\theta =1 are identities. Identities are sometimes indicated by the triple bar symbol instead of , the equals sign. Common identities Algebraic identities Certain identities, such as a+0=a and a+(-a)=0, form the basis of algebra, while other identities, such as (a+b)^2 = a^2 + 2ab +b^2 and a^2 - b^2 = (a+b)(a-b), can be useful in simplifying algebraic expressions and expanding them. Trigonometric identities Geometrically, trigonometric ide ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Theorems In Number Theory
In mathematics, a theorem is a statement that has been proved, or can be proved. The ''proof'' of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of the axioms and previously proved theorems. In the mainstream of mathematics, the axioms and the inference rules are commonly left implicit, and, in this case, they are almost always those of Zermelo–Fraenkel set theory with the axiom of choice, or of a less powerful theory, such as Peano arithmetic. A notable exception is Wiles's proof of Fermat's Last Theorem, which involves the Grothendieck universes whose existence requires the addition of a new axiom to the set theory. Generally, an assertion that is explicitly called a theorem is a proved result that is not an immediate consequence of other known theorems. Moreover, many authors qualify as ''theorems'' only the most important results, and use the terms ''lemma'', ''proposition'' and '' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]