Quadratic Fields
In algebraic number theory, a quadratic field is an algebraic number field of degree two over \mathbf, the rational numbers. Every such quadratic field is some \mathbf(\sqrt) where d is a (uniquely defined) square-free integer different from 0 and 1. If d>0, the corresponding quadratic field is called a real quadratic field, and, if d<0, it is called an imaginary quadratic field or a complex quadratic field, corresponding to whether or not it is a subfield of the field of the real numbers. Quadratic fields have been studied in great depth, initially as part of the theory of binary quadratic forms. There remain some unsolved problems. The |
|
Algebraic Number Theory
Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic objects such as algebraic number fields and their rings of integers, finite fields, and function fields. These properties, such as whether a ring admits unique factorization, the behavior of ideals, and the Galois groups of fields, can resolve questions of primary importance in number theory, like the existence of solutions to Diophantine equations. History of algebraic number theory Diophantus The beginnings of algebraic number theory can be traced to Diophantine equations, named after the 3rd-century Alexandrian mathematician, Diophantus, who studied them and developed methods for the solution of some kinds of Diophantine equations. A typical Diophantine problem is to find two integers ''x'' and ''y'' such that their sum, and th ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Chebotarev Density Theorem
Chebotarev's density theorem in algebraic number theory describes statistically the splitting of primes in a given Galois extension ''K'' of the field \mathbb of rational numbers. Generally speaking, a prime integer will factor into several ideal primes in the ring of algebraic integers of ''K''. There are only finitely many patterns of splitting that may occur. Although the full description of the splitting of every prime ''p'' in a general Galois extension is a major unsolved problem, the Chebotarev density theorem says that the frequency of the occurrence of a given pattern, for all primes ''p'' less than a large integer ''N'', tends to a certain limit as ''N'' goes to infinity. It was proved by Nikolai Chebotaryov in his thesis in 1922, published in . A special case that is easier to state says that if ''K'' is an algebraic number field which is a Galois extension of \mathbb of degree ''n'', then the prime numbers that completely split in ''K'' have density :1/''n'' among ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Principal Ideal Domain
In mathematics, a principal ideal domain, or PID, is an integral domain in which every ideal is principal, i.e., can be generated by a single element. More generally, a principal ideal ring is a nonzero commutative ring whose ideals are principal, although some authors (e.g., Bourbaki) refer to PIDs as principal rings. The distinction is that a principal ideal ring may have zero divisors whereas a principal ideal domain cannot. Principal ideal domains are thus mathematical objects that behave somewhat like the integers, with respect to divisibility: any element of a PID has a unique decomposition into prime elements (so an analogue of the fundamental theorem of arithmetic holds); any two elements of a PID have a greatest common divisor (although it may not be possible to find it using the Euclidean algorithm). If and are elements of a PID without common divisors, then every element of the PID can be written in the form . Principal ideal domains are noetherian, they are i ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |