Predecessor Problem
   HOME
*



picture info

Predecessor Problem
In computer science, the predecessor problem involves maintaining a set of items to, given an element, efficiently query which element precedes or succeeds that element in an order. Data structures used to solve the problem include balanced binary search trees, van Emde Boas trees, and fusion trees. In the static predecessor problem, the set of elements does not change, but in the dynamic predecessor problem, insertions into and deletions from the set are allowed. The predecessor problem is a simple case of the nearest neighbor problem, and data structures that solve it have applications in problems like integer sorting. Definition The problem consists of maintaining a set , which contains a subset of integers. Each of these integers can be stored with a word size of , implying that U \le 2^w. Data structures that solve the problem support these operations: * predecessor(x), which returns the largest element in less than or equal to * successor(x), which returns the smalles ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computer Science
Computer science is the study of computation, automation, and information. Computer science spans theoretical disciplines (such as algorithms, theory of computation, information theory, and automation) to Applied science, practical disciplines (including the design and implementation of Computer architecture, hardware and Computer programming, software). Computer science is generally considered an area of research, academic research and distinct from computer programming. Algorithms and data structures are central to computer science. The theory of computation concerns abstract models of computation and general classes of computational problem, problems that can be solved using them. The fields of cryptography and computer security involve studying the means for secure communication and for preventing Vulnerability (computing), security vulnerabilities. Computer graphics (computer science), Computer graphics and computational geometry address the generation of images. Progr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Big O Notation
Big ''O'' notation is a mathematical notation that describes the limiting behavior of a function when the argument tends towards a particular value or infinity. Big O is a member of a family of notations invented by Paul Bachmann, Edmund Landau, and others, collectively called Bachmann–Landau notation or asymptotic notation. The letter O was chosen by Bachmann to stand for ''Ordnung'', meaning the order of approximation. In computer science, big O notation is used to classify algorithms according to how their run time or space requirements grow as the input size grows. In analytic number theory, big O notation is often used to express a bound on the difference between an arithmetical function and a better understood approximation; a famous example of such a difference is the remainder term in the prime number theorem. Big O notation is also used in many other fields to provide similar estimates. Big O notation characterizes functions according to their growth rates: d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Expected Time
In computational complexity theory, the average-case complexity of an algorithm is the amount of some computational resource (typically time) used by the algorithm, averaged over all possible inputs. It is frequently contrasted with worst-case complexity which considers the maximal complexity of the algorithm over all possible inputs. There are three primary motivations for studying average-case complexity.O. Goldreich and S. Vadhan, Special issue on worst-case versus average-case complexity, Comput. Complex. 16, 325–330, 2007. First, although some problems may be intractable in the worst-case, the inputs which elicit this behavior may rarely occur in practice, so the average-case complexity may be a more accurate measure of an algorithm's performance. Second, average-case complexity analysis provides tools and techniques to generate hard instances of problems which can be utilized in areas such as cryptography and derandomization. Third, average-case complexity allows discrimin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Journal Of The ACM
The ''Journal of the ACM'' is a peer-reviewed scientific journal covering computer science in general, especially theoretical aspects. It is an official journal of the Association for Computing Machinery. Its current editor-in-chief is Venkatesan Guruswami. The journal was established in 1954 and "computer scientists universally hold the ''Journal of the ACM'' in high esteem". See also * ''Communications of the ACM ''Communications of the ACM'' is the monthly journal of the Association for Computing Machinery (ACM). It was established in 1958, with Saul Rosen as its first managing editor. It is sent to all ACM members. Articles are intended for readers with ...'' References External links * Publications established in 1954 Computer science journals Association for Computing Machinery academic journals Bimonthly journals English-language journals {{compu-journal-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Exponential Tree
An exponential tree is a type of search tree where the number of children of its nodes decreases doubly-exponentially with increasing depth. Values are stored only in the leaf nodes. Each node contains a splitter, a value less than or equal to all values in the subtree which is used during search. Exponential trees use another data structure in inner nodes containing the splitters from children, allowing fast lookup. Exponential trees achieve optimal asymptotic complexity on some operations. They have mainly theoretical importance. Tree structure An exponential tree is a rooted tree In graph theory, a tree is an undirected graph in which any two vertices are connected by ''exactly one'' path, or equivalently a connected acyclic undirected graph. A forest is an undirected graph in which any two vertices are connected by ''a ... where every node contains a splitter and every leaf node contains a value. The value may be different from the splitter. An exponential tree with n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Symposium On Theory Of Computing
The Annual ACM Symposium on Theory of Computing (STOC) is an academic conference in the field of theoretical computer science. STOC has been organized annually since 1969, typically in May or June; the conference is sponsored by the Association for Computing Machinery special interest group SIGACT. Acceptance rate of STOC, averaged from 1970 to 2012, is 31%, with the rate of 29% in 2012. As writes, STOC and its annual IEEE counterpart FOCS (the Symposium on Foundations of Computer Science) are considered the two top conferences in theoretical computer science, considered broadly: they “are forums for some of the best work throughout theory of computing that promote breadth among theory of computing researchers and help to keep the community together.” includes regular attendance at STOC and FOCS as one of several defining characteristics of theoretical computer scientists. Awards The Gödel Prize for outstanding papers in theoretical computer science is presented alternately a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Michael Fredman
Michael Lawrence Fredman is an emeritus professor at the Computer Science Department at Rutgers University, United States. He earned his Ph.D. degree from Stanford University in 1972 under the supervision of Donald Knuth. He was a member of the mathematics department at the Massachusetts Institute of Technology from 1974 to 1976. and of the Computer Science and Engineering department at the University of California, San Diego until 1992.UCSD Mathematics: Department History
. Among his contributions to computer science are the development of the in a joint work with , ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fusion Tree
In computer science, a fusion tree is a type of tree data structure that implements an associative array on -bit integers on a finite universe, where each of the input integer has size less than 2w and is non-negative. When operating on a collection of key–value pairs, it uses space and performs searches in time, which is asymptotically faster than a traditional self-balancing binary search tree, and also better than the van Emde Boas tree for large values of . It achieves this speed by using certain constant-time operations that can be done on a machine word. Fusion trees were invented in 1990 by Michael Fredman and Dan Willard. Several advances have been made since Fredman and Willard's original 1990 paper. In 1999 it was shown how to implement fusion trees under a model of computation in which all of the underlying operations of the algorithm belong to AC0, a model of circuit complexity that allows addition and bitwise Boolean operations but does not allow the multip ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Information Processing Letters
''Information Processing Letters'' is a peer reviewed scientific journal in the field of computer science, published by Elsevier Elsevier () is a Dutch academic publishing company specializing in scientific, technical, and medical content. Its products include journals such as ''The Lancet'', ''Cell'', the ScienceDirect collection of electronic journals, '' Trends'', th .... The aim of the journal is to enable fast dissemination of results in the field of information processing in the form of short papers. Submissions are limited to nine double-spaced pages. Both theoretical and experimental research is covered. External links * Computer science journals Publications established in 1971 Semi-monthly journals Elsevier academic journals {{compu-journal-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Y-fast Trie
In computer science, a y-fast trie is a data structure for storing integers from a bounded domain. It supports exact and predecessor or successor queries in time ''O''(log log ''M''), using ''O''(''n'') space, where ''n'' is the number of stored values and ''M'' is the maximum value in the domain. The structure was proposed by Dan Willard in 1982 to decrease the ''O''(''n'' log ''M'') space used by an x-fast trie. Structure A y-fast trie consists of two data structures: the top half is an x-fast trie and the lower half consists of a number of balanced binary trees. The keys are divided into groups of ''O''(log ''M'') consecutive elements and for each group a balanced binary search tree is created. To facilitate efficient insertion and deletion, each group contains at least (log ''M'')/4 and at most 2 log ''M'' elements. For each balanced binary search tree a representative ''r'' is chosen. These representatives are stored in the x-fast t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


X-fast Trie
In computer science, an x-fast trie is a data structure for storing integers from a bounded domain. It supports exact and predecessor or successor queries in time ''O''(log log ''M''), using ''O''(''n'' log ''M'') space, where ''n'' is the number of stored values and ''M'' is the maximum value in the domain. The structure was proposed by Dan Willard in 1982, along with the more complicated y-fast trie, as a way to improve the space usage of van Emde Boas trees, while retaining the ''O''(log log ''M'') query time. Structure An x-fast trie is a bitwise trie: a binary tree where each subtree stores values whose binary representations start with a common prefix. Each internal node is labeled with the common prefix of the values in its subtree and typically, the left child adds a 0 to the end of the prefix, while the right child adds a 1. The binary representation of an integer between 0 and ''M'' − 1 uses ⌈log2 ''M''⌉ bits, s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dan Willard
Dan Edward Willard is an American computer scientist and logician, and is a professor of computer science at the University at Albany. Education and career Willard did his undergraduate studies in mathematics at Stony Brook University, graduating in 1970. He went on to graduate studies in mathematics at Harvard University, earning a master's degree in 1972 and a doctorate in 1978. After leaving Harvard, he worked at Bell Labs for four years before joining the Albany faculty in 1983.Curriculum vitae
accessed 2013-06-04.


Contributions

Although trained as a mathematician and employed as a computer scientist, Willard's most highly cited publication is in . In 1973, wi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]